Die Entdeckung des Zufalls

Als Max Planck vor 100 Jahren mit einem Vortrag vor der Deutschen Physikalischen Gesellschaft in Berlin den Grundstein zur Quantentheorie legte, brachte er damit eine tiefgreifende Umwälzung des physikalischen Weltbilds in Gang. Hatten die Wissenschaftler bis dahin geglaubt, die Natur gleiche einem überdimensionalen Uhrwerk mit vorhersehbaren Abläufen, so wurden sie im Zuge der quantenmechanischen Revolution mit der Entdeckung des Zufalls konfrontiert.
Die Erkenntnis, dass es zum Beispiel für den Zeitpunkt des Zerfalls eines radioaktiven Atoms keinerlei Ursache gibt, war für die Physiker zu Beginn des 20. Jahrhunderts keineswegs erfreulich. Die sogenannte deterministische, klassische Physik hatte es ihnen ermöglicht, die Natur zu verstehen und Ereignisse wie Springfluten oder Mondfinsternisse vorherzusagen. Das gab ihnen über viele Jahrhunderte ein Gefühl von Sicherheit und Macht. Das Ende des Determinismus, der Vorhersagbarkeit, war daher nur schwer zu akzeptieren.
Dabei hatten statistische Theorien, die lediglich Aussagen über die Wahrscheinlichkeit eines Ereignisses machen, die Physiker in früheren Zeiten nicht beunruhigt. Man wusste, hochkomplexe Systeme wie Gase ließen sich nur über statistische Aussagen in den Griff bekommen. Denn es ist einfach unmöglich, die Orte und Geschwindigkeiten aller Teilchen eines Gases zu kennen. Würde aber ein „Superhirn” existieren, das über sämtliche nach dem Urknall entstandenen Teilchen Bescheid wüsste, dann müsste es den Lauf der Welt vorausberechnen können – so die damalige Meinung. Nun stellte sich heraus, dass dem Zufall in der Quantentheorie mit dieser Art von Allwissenheit nicht beizukommen war. Die sogenannte Unbestimmtheitsrelation machte es grundsätzlich unmöglich, Ort und Geschwindigkeit eines Gasatoms zur gleichen Zeit exakt zu messen.
Die Quantentheorie brachte aber nicht nur den Zufall ins Spiel. Es stellte sich heraus, dass quantenmechanische Dinge ein merkwürdig schemenhaftes Dasein führen, das erst durch eine Messung, also den Eingriff eines Beobachters, in einen eindeutigen Zustand überführt wird. Der Zustand eines Elektrons ist ohne eine Messung, die uns diesen Zustand offenbart, nicht nur nicht bekannt, sondern einfach nicht definiert. Hieraus ergab sich die Notwendigkeit, über erkenntnistheoretische Fragen nachzudenken. Denn nachdem sicher war, dass es keine vom Beobachter losgelöste Realität gibt, stellte sich die zentrale Frage, was wir dann überhaupt über die Natur wissen können. Was treibt ein Elektron, wenn ihm keiner zusieht? Auf diese Frage gibt es schlichtweg keine Antwort.
Die Quantenmechanik ist die am besten überprüfte und bestätigte Theorie überhaupt. Gleichzeitig sind ihre möglichen Konsequenzen wie Zeitreisen, „geisterhafte Fernwirkungen” oder die Quanten- Teleportation mit unserem an der Alltagswelt geschulten Verstand kaum zu erfassen. Die Quantentheorie bildet die Grundlage der gesamten modernen Physik, denn erst durch sie wurde ein tieferes Verständnis der Materie möglich. Mit ihrer Hilfe können wir beispielsweise erklären, warum Atome stabil sind, wie ein Laser funktioniert und warum Metalle den Strom besser leiten als die meisten Kunststoffe. Und nicht nur für die Elektronik, Optik oder Nanotechnologie ist die Quantenphysik entscheidend – auch die Vorgänge in der Chemie und Molekularbiologie sind letztlich auf Quanteneffekte zurückzuführen. „Bei der Interpretation der Quantentheorie mag es Schwierigkeiten geben”, schreibt der britische Elementarteilchenphysiker Robert Gilmore, „aber sie funktioniert zweifellos aufs beste.”
(Quelle: Themenheft »Entdeckung des Zufalls«, BMBF, Dezember 2000)

Buchtipp:
Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen