Mitochondrien stellen sich effizient auf veränderte Stoffwechselbedingungen ein



Teilen: 

10.02.2022 13:50

Mitochondrien stellen sich effizient auf veränderte Stoffwechselbedingungen ein

• Freiburger Forschende weisen nach, dass dafür die Proteinkomplexe MICOS und ATP-Synthase miteinander kommunizieren können.
• Das ist ein Bestandteil für die wesentliche Funktion von Mitochondrien. Defekte in deren Zellatmung können zu schweren Erkrankungen beim Menschen führen.
• „Die Kommunikation zwischen den beiden Komplexen ist vermutlich der Schlüssel zu einer gut koordinierten Biogenese der inneren Mitochondrien-Membran.“

Literature advertisement

Plötzlich gesund

Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‘Wissenschaft’, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.

Hier geht es weiter …

Eine aktuelle Studie erklärt einen wesentlichen Bestandteil für die einwandfreie Funktion von Mitochondrien: Die Proteinkomplexe MICOS und ATP-Synthase können miteinander kommunizieren. Dr. Heike Rampelt und Prof. Dr. Nikolaus Pfanner am Institut für Biochemie und Molekularbiologie der Universität Freiburg haben diesen wichtigen Mechanismus entdeckt, der sicherstellt, dass sich die Mitochondrien für den Stoffwechsel effizient auf veränderte bedingungen einstellen können.Die Studie entstand in Zusammenarbeit mit den Arbeitsgruppen von Prof. Dr. Martin van der Laan von der Universität des Saarlandes, Prof. Dr. Claudine Kraft von der Universität Freiburg sowie Prof. Dr. Ida van der Klei von der Universität Groningen/Niederlande und umfasst biochemische Methoden, Fluoreszenzmikroskopie von lebenden Zellen und Elektronenmikroskopie, mit deren Hilfe die Membranarchitektur sichtbar gemacht werden kann. Die Arbeit erschien in der Fachzeitschrift Cell Reports.

Zellatmung der inneren Mitochondrien-Membran

Mitochondrien, die Kraftwerke der Zelle, leisten einen enormen Beitrag zur Energieversorgung des Körpers, indem sie Stoffwechselprodukte mit Hilfe von Sauerstoff verbrennen. Diese Zellatmung findet in der inneren der beiden Mitochondrien-Membranen statt, die im Gegensatz zur äußeren Membran stark gefaltet ist. Der räumliche Aufbau dieser Einfaltungen, der sogenannten Cristae-Membranen, wirkt sich maßgeblich auf die Effizienz der Zellatmung aus und ist wichtig für viele Funktionen von Mitochondrien. Daher wird die Architektur der Cristae genau kontrolliert und dynamisch an den Zellstoffwechsel angepasst. Defekte in diesen Prozessen führen zu schweren Erkrankungen beim Menschen.

Kommunikation von MICOS-Komplex und ATP-Synthase

Zwei Proteinkomplexe in der inneren Mitochondrien-Membran, ohne die eine normale Membranarchitektur nicht möglich ist, sind die F1Fo-ATP-Synthase, die auch an der Bereitstellung von Energie beteiligt ist, sowie der MICOS-Komplex (mitochondrial contact site and cristae organizing system). Diese Proteinkomplexe gelten als Gegenspieler; sie sitzen an unterschiedlichen Stellen der inneren Membran und krümmen die Membran in entgegengesetzte Richtungen. Unklar war bislang, wie die Funktionen dieser beiden Proteinkomplexe aufeinander abgestimmt werden können. Das Team um Rampelt und Pfanner zeigt nun, dass MICOS und ATP-Synthase miteinander kommunizieren können. Diese wechselseitige Kommunikation ist wesentlich für die einwandfreie Funktion der Mitochondrien. Eine Untereinheit von MICOS, Mic10, wandert zur ATP-Synthase und stabilisiert die Zusammenlagerung mehrerer ATP-Synthasen zu großen Komplexen. Diese neue regulatorische Funktion von Mic10 ist wichtig für den Stoffwechsel und eine effiziente Atmung. „Die Kommunikation zwischen den beiden Komplexen ist vermutlich der Schlüssel zu einer gut koordinierten Biogenese der inneren Mitochondrien-Membran”, erklärt Rampelt.

Heike Rampelt, Nikolaus Pfanner und Claudine Kraft leiten Arbeitsgruppen am Institut für Biochemie und Molekularbiologie der Medizinischen Fakultät und forschen im Exzellenzcluster CIBSS der Albert-Ludwigs-Universität Freiburg im Bereich biologische Signalforschung.


Wissenschaftliche Ansprechpartner:

Dr. Heike Rampelt
Institut für Biochemie und Molekularbiologie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-5245
E-Mail: heike.rampelt@biochemie.uni-freiburg.de


Originalpublikation:

Rampelt, H., Wollweber, F., Licheva, M., de Boer, R., Perschil, I., Steidle, L., Becker, T., Bohnert, M., van der Klei, I., Kraft, C., van der Laan, M., Pfanner, N. (2022): Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth. In: Cell Reports, 38:110290. DOI: https://doi.org/10.1016/j.celrep.2021.110290


Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2022/mitochondrien-stellen-sich-effizient-auf-…


Merkmale dieser Pressemitteilung:
Journalisten
Biologie, Medizin
überregional
Forschungsergebnisse
Deutsch


Quelle: IDW