Wie das Gehirn von Fledermäusen bei der Echoortung auf eingehende Signale lauscht



Teilen: 

03.08.2022 13:00

Wie das Gehirn von Fledermäusen bei der Echoortung auf eingehende Signale lauscht

Wenn Fledermäuse Laute für die Echoortung ausstoßen, moduliert eine Rückkopplungsschleife die Empfänglichkeit der Hörrinde für eingehende akustische Signale. Dies haben Neurowissenschaftler der Goethe-Universität Frankfurt herausgefunden. In einer in der Zeitschrift „Nature Communications“ veröffentlichten Studie zeigen sie, dass sich der Informationsfluss im beteiligten neuronalen Schaltkreis im Zuge der Lauterzeugung umkehrte. Diese Rückkopplung bereitet die Hörrinde wohl auf die zu erwartenden „Echos“ der ausgesandten Laute vor. Die Forscher sehen ihre Ergebnisse als Zeichen dafür, dass die Bedeutung von Rückkopplungsschleifen im Gehirn derzeit noch unterschätzt wird.

Literature advertisement

Plötzlich gesund

Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‘Wissenschaft’, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.

Hier geht es weiter …

Fledermäuse sind berühmt für ihre Ultraschall-Navigation: Sie orientieren sich über ihr äußerst empfindliches Gehör, indem sie Ultraschalllaute ausstoßen und anhand des zurückgeworfenen Schalls ein Bild ihrer Umwelt erhalten. So findet beispielsweise die Brillenblattnasenfledermaus (Carollia perspicillata) die von ihr als Nahrung bevorzugten Früchte über dieses Echoortungssystem. Gleichzeitig nutzen die Fledermäuse ihre Stimme auch zur Kommunikation mit den Artgenossen, wofür sie einen etwas tieferen Frequenzbereich wählen.

Der Neurowissenschaftler Julio C. Hechavarria vom Institut für Zellbiologie und Neurowissenschaft der Goethe-Universität untersucht zusammen mit seinem Team, welche Gehirnaktivitäten bei der Brillenblattnase mit den Lautäußerungen einhergehen. In ihrer neusten Studie haben die Frankfurter untersucht, wie der Stirnlappen – eine Region im Vorderhirn, die beim Menschen unter anderem mit der Planung von Handlungen in Verbindungen gebracht wird – und die Hörrinde, in der akustische Signale verarbeitet werden, bei der Echoortung zusammenarbeiten. Dafür setzten die Forscher den Fledermäusen winzige Elektroden ein, die die Aktivität der Nervenzellen im Stirnlappen und in der Hörrinde aufzeichnete.

Bei Fledermäusen, die Ortungslaute ausstießen, konnten die Forscher eine Rückkopplungsschleife im Netzwerk aus Frontallappen und Hörrinde identifizieren, die bislang völlig unbekannt war. Normalerweise fließt die Information vom Stirnlappen, in dem die Lauterzeugung geplant wird, zur Hörrinde, um diese darauf vorzubereiten, dass demnächst ein akustisches Signal zu erwarten ist. Nach dem Ausstoß eines Ortungslautes reduzierte sich allerdings der Informationsfluss vom Stirnlappen zur Hörrinde, bis er sich ganz umkehrte: Die Information floss nun von der Hörrinde zurück zum Stirnlappen. Vermutlich, so Hechavarria, bereitet diese Rückkopplungsschleife die Hörrinde noch besser auf den Empfang der auf die Ortungslaute folgenden Schallreflexionen vor.

Durch eine elektrische Stimulation des Frontallappens simulierten die Neurobiologen von der Hörrinde stammende Signale. Die dadurch erzeugte Aktivität im Stirnlappen führte tatsächlich dazu, dass die Hörrinde stärker auf Schallreflexionen reagierte. „Das zeigt, dass die von uns gefundene Rückkopplungsschleife funktional ist“, fasst Hechavarria zusammen. Um die Bedeutung der Ergebnisse zu veranschaulichen, greift der Neurobiologe auf das Bild einer Autobahn zurück: „Bislang hat man geglaubt, dass der Informationsfluss auf dieser Datenautobahn in erster Linie in einer Richtung verläuft und Rückkopplungsschleifen die Ausnahme sind. Unsere Daten zeigen, dass diese Sicht vermutlich nicht korrekt ist und Rückkopplungsschleifen im Gehirn eine viel größere Bedeutung haben als bislang angenommen.“

Überraschend war, dass bei Kommunikationslauten keine ausgeprägte Umkehr des Informationsflusses beobachtet werden konnte. „Möglicherweise liegt das daran, dass die Fledermäuse alleine in einer Isolationskammer gehalten wurden und deshalb keine Antwort auf ihre Rufe erwarteten“, vermutet Hechavarria und fährt fort: „Was unsere Studie unter anderem so interessant macht, ist, dass sie neue Wege öffnet, um die sozialen Interaktionen von Fledermäusen zu untersuchen. An dieser Stelle wollen wir zukünftig weiterarbeiten.“

Ein Bild zum Download: https://www.uni-frankfurt.de/122772504

Bildtext: Fledermäuse „sehen“ mit den Ohren. Wie die Hörrinde auf die eingehenden akustischen Signale vorbereitet wird, haben Wissenschaftler der Goethe-Universität herausgefunden. (Foto: Hechavarria)


Wissenschaftliche Ansprechpartner:

Dr. Julio C. Hechavarria (Ph.D.)
Auditory Computations Group (Gruppenleiter)
Institut für Zellbiologie und Neurowissenschaft
Tel. +49 (0)69 798-42050
Hechavarria@bio.uni-frankfurt.de
https://www.julio-hechavarria.com/


Originalpublikation:

Francisco García-Rosales, Luciana López-Jury, Eugenia Gonzalez-Palomares, Johannes Wetekam, Yuranny Cabral-Calderín, Ava Kiai, Manfred Kössl, Julio C. Hechavarría: Echolocation-related reversal of information flow in a cortical vocalization network. Nature Communications 13, 3642 (2022). https://doi.org/10.1038/s41467-022-31230-6


Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Biologie, Medizin, Tier / Land / Forst, Umwelt / Ökologie
überregional
Forschungsergebnisse, Kooperationen
Deutsch


Quelle: IDW