Fraunhofer IEE reduziert Prognosefehler für Sonnenfinsternis



Teilen: 

28.07.2022 17:58

Fraunhofer IEE reduziert Prognosefehler für Sonnenfinsternis

Die Integration von Photovoltaik ins Stromnetz erfordert besonders bei steigenden Kapazitäten immer bessere Prognosen, denn ein reibungsloser Netzbetrieb kann keine vermeidbaren Fehler akzeptieren. Dabei stellen seltene meteorologische Extremereignisse noch besondere Herausforderungen dar. Neben Vulkan-Asche und Sahara-Staub erfordert eine Sonnenfinsternis die besondere Aufmerksamkeit der Netzbetreiber, Stromhändler und Prognose-Dienstleister. Am Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE wurde nun eine Lösung entwickelt, um den Bedeckungsgrad orts- und zeitspezifisch mit etablierten Wetterprognose-Modellen zu kombinieren.

Die nächste partielle Sonnenfinsternis in Mitteleuropa wird am 25. Oktober 2022 beobachtbar sein und die PV-Einspeisung von Solaranlagen und Solarparks signifikant reduzieren. Wetterprognosen enthalten solche seltenen Extremereignisse bisher nicht routinemäßig. Daher haben Expertinnen und Experten am Fraunhofer IEE eine flexible Lösung entwickelt und validiert, um den Bedeckungsgrad spezifisch für Ort und Zeit mit allen wichtigen Wetterprognosen kombinieren zu können. So werden sich die regionalen und lokalen PV-Einspeiseprognosen zukünftig optimal anpassen und Fehler reduzieren lassen.

Die vorherige Abschätzung einer Sonnenfinsternis muss rein auf Basis vorher bekannter Daten möglich sein. Schon mittels Persistenzprognose (clear-sky-Index) kann der Tagesgang von Globalstrahlung oder PV-Einspeisung über eine Sonnenfinsternis hinweg gut fortgesetzt werden. Dabei kann der Effekt der Sonnenfinsternis zwar langsamer und kleiner sein als der Einfluss wechselnder Bewölkung, spielt aber in jedem Fall eine signifikante Rolle im Ergebnis. Auch volatiler Eigenverbrauch wirkt sich massiv im Einspeiseprofil von Solaranlagen aus und muss (und kann) daher gesondert behandelt (und prognostiziert) werden.

Die Validierung der Ergebnisse mit Daten vom 10. Juni 2021 erfolgte in zwei Schritten: durch bodengestützte Messung der Globalstrahlung auf Basis von Daten des Deutschen Wetterdienstes DWD und Einspeise-Messungen tausender PV-Parks, die für Hochrechnung- und Prognose-Prozesse bei Amprion GmbH genutzt werden.

Wetterprognosen und Leistungsprognosen des Fraunhofer IEE enthalten das neue Simulations-Feature bereits. Außerdem steht die Lösung als Algorithmus oder fertiges Softwaremodul für die Integration beim Anwender direkt zur Verfügung. So werden Fehler vermieden und die Vermarktung und der Netzbetrieb optimal unterstützt.

Optimierte Leistungsprognosen an neuen Standorten

Leistungsprognosen sind ein Grundbaustein für eine sichere Netzintegration von erneuerbaren Energien. Der weitere Ausbau von PV-Anlagen in Deutschland erfordert gut skalierbare Modelle, die schnell und zeitnah nach Anlageninstallation Prognosen mit einer guten Prognosegüte liefern können. Mithilfe von Multi-Task- und Transfer-Learning konnten diese Anforderung in einer Methodik umgesetzt werden, die am Fraunhofer IEE erfolgreich für PV-Prognosen sowie (Eigen-) Verbrauchsprognosen getestet wurde.

Alternativ kann auf neue, unbekannte oder nicht vermessene Standorte und Regionen hochgerechnet werden, ausgehend von bekannten bzw. vermessenen Solarparks. Solche Hochrechnungsverfahren für aktuelle Messwerte oder auch Prognosen wurden im Projekt SOLREV in Kooperation mit Fraunhofer ISE und den Übertragungsnetzbetreibern optimiert und verglichen.

Sonnenfinsternis im Oktober 2022 mit starker Bedeckung

Die Sonnenfinsternis am 25. Oktober 2022 wird mit ca. 25% Bedeckungsgrad etwa doppelt so stark sein wie die Sonnenfinsternis am 10. Juni 2021 mit ca. 13%. Konkrete Wetterprognosen wenige Tage vorher werden Aufschluss darüber geben, wie stark die Bewölkung und damit letztendlich der Effekt der Sonnenfinsternis sein wird.

Zusammenfassend sind die Studienergebnisse vielversprechend und erlauben die Anwendung auf individuelle Wetterprognosen. „Zusätzlich zu den schon guten Prognosemodellen für die Einspeisung einzelner PV-Parks oder ganzer Portfolios – inklusive Eigenverbrauch und anderer individueller Effekte – kann so ein wichtiger Beitrag geleistet werden, um Fehler zu vermeiden oder zu reduzieren “, sagt Dr. Rafael Fritz vom Fraunhofer IEE. Daten jeder weiteren Sonnenfinsternis und andere Optimierungen werden die Methodik weiter verbessern und Energiesysteme weltweit resilienter machen gegen solche lokal, aber nicht global seltenen Extremereignisse.

Die Ergebnisse zur Simulation von Sonnenfinsternissen für die Anwendung in PV-Einspeiseprognosen werden im Oktober Teil einer Expert-Web-Session am Fraunhofer IEE sein.


Wissenschaftliche Ansprechpartner:

Dr. Rafael Fritz, Fraunhofer IEE, Produktmanager Solarleistungsprognosen


Weitere Informationen:

https://www.iee.fraunhofer.de/de/presse-infothek/Presse-Medien/2022/prognosefehl…


Merkmale dieser Pressemitteilung:
Journalisten, Wirtschaftsvertreter, Wissenschaftler
Elektrotechnik, Energie, Informationstechnik, Meer / Klima, Umwelt / Ökologie
überregional
Forschungsergebnisse
Deutsch


Quelle: IDW