Lichtgetriebene Nanomotoren – Erfolgreich gekoppelt



Teilen: 

28.01.2020 12:44

Lichtgetriebene Nanomotoren – Erfolgreich gekoppelt

LMU-Forschern ist es gelungen, die Bewegung eines lichtgetriebenen molekularen Motors auf eine andere molekulare Einheit zu übertragen – eine wichtige Voraussetzung für den Einsatz solcher Motoren in Nanomaschinen.

Lichtgetriebene molekulare Motoren, die gezielte Drehbewegungen ausführen, haben großes Potenzial für zukünftige Anwendungen in der Nanotechnologie. Damit solche Motoren als Antrieb genutzt werden können, müssen sie in größere molekulare Einheiten integriert und ihre mechanischen Bewegungen auf Nanomaschinen übertragen werden – derzeit eine große Herausforderung für Wissenschaftler. Der LMU-Chemiker Dr. Henry Dube ist Spezialist für molekulare Motoren und mit seinem Team auf diesem Weg nun einen wichtigen Schritt vorangekommen: Wie die Wissenschaftler im Fachmagazin Angewandte Chemie berichten, konnten sie einen Motor mit einer Empfängereinheit koppeln und deren Drehung dadurch deutlich beschleunigen.

Der molekulare Motor basiert auf dem Molekül Hemithioindigo, das eine Kohlenstoff-Doppelbindung hat. Unter Lichteinfluss verändert das Molekül seine Struktur und rotiert unidirektional – also in eine Richtung – um seine Doppelbindung. „Bereits in einer 2018 veröffentlichten Arbeit ist es uns gelungen, diese Doppelbindung wie mit einem molekularen Seil mit einer Einfachbindung in einem zweiten Molekülteil zu verbinden“, sagt Dube. „Diese Einfachbindung dreht aufgrund von Wärme zwar auch alleine, aber durch die Kopplung ist es uns gelungen, die Bewegungsrichtung zu übertragen, das heißt, wir haben die Bindung gezwungen, nur in eine Richtung zu drehen.“

Ungeklärt war allerdings noch, ob der Motor die Bewegung der zweiten Bindung auch wirklich antreibt und nicht nur ihre Richtung lenkt. Deshalb haben die Wissenschaftler in der aktuellen Arbeit eine Bremse eingebaut, die verhindert, dass sich die Einfachbindung unter Versuchsbedingungen von selbst dreht – der Motor muss also Arbeit gegen die Bremse leisten, um die Einfachbindung zum Drehen zu bringen. „So konnten wir nachweisen, dass der Motor die Drehung der Einfachbindung wirklich beschleunigt – und das sogar um mehrere Größenordnungen“, sagt Dube.

Insgesamt ermöglichen die Ergebnisse nach Ansicht der Wissenschaftler beispiellose Einblicke in den Mechanismus einer integrierten molekularen Maschine. Zudem kann die in dem System nutzbare potenzielle Energie quantifiziert werden. Die Studie liefert daher erste Antworten auf die Frage, wieviel Arbeit ein einzelner molekularer Motor auf der molekularen Skala tatsächlich leisten kann. „Ein nächster Meilenstein wird es sein, die übertragene Energie zur Ausführung von Arbeiten auf molekularer Ebene zu nutzen“, sagt Dube. Dieses Ziel wollen die Wissenschaftler zukünftig angehen.


Wissenschaftliche Ansprechpartner:

Dr. Henry Dube
LMU, Department Chemie
Tel.: +49 (0)89 2180-77698
E-Mail: henry.dube@cup.lmu.de


Originalpublikation:

Edgar Uhl, Peter Mayer, Henry Dube:
Active and Unidirectional Acceleration of Biaryl Rotation by a Molecular Motor
Angewandte Chemie 2020
https://onlinelibrary.wiley.com/doi/10.1002/ange.201913798


Merkmale dieser Pressemitteilung:
Journalisten
Chemie, Physik / Astronomie
überregional
Forschungsergebnisse
Deutsch


Quelle: IDW