Elektronensimulationen: Forscher verbessern weit verbreitete Simulationsmethode für Hochleistungscomputercluster



Teilen: 

01.07.2022 10:34

Elektronensimulationen: Forscher verbessern weit verbreitete Simulationsmethode für Hochleistungscomputercluster

Die meisten grundlegenden mathematischen Gleichungen, die elektronische Strukturen beschreiben, sind seit langem bekannt. Allerdings sind sie zu komplex, um sie in der Praxis zu lösen. Dies hat Fortschritte in der Physik, Chemie und den Materialwissenschaften erschwert. Dank moderner Hochleistungscomputercluster und der Etablierung einer bestimmten Simulationsmethode, der Dichtefunktionaltheorie (DFT), hat sich die Lage zwar gebessert. Doch selbst damit sind die modellierten Prozesse oft noch stark vereinfacht. Jetzt ist es Physikern am HZDR gelungen, diese Methode deutlich zu verbessern. Damit eröffnen sich neue Möglichkeiten für Experimente mit Ultrahochintensitätslasern.

In der neuen Publikation nehmen sich Nachwuchsgruppenleiter Dr. Tobias Dornheim, Hauptautor Dr. Zhandos Moldabekov (beide CASUS, HZDR) und Dr. Jan Vorberger (Institut für Strahlenphysik, HZDR) einer der grundlegendsten Herausforderungen unserer Zeit an: präzise zu beschreiben, wie Milliarden von Quantenteilchen wie etwa Elektronen miteinander wechselwirken. Diese so genannten Quanten-Vielteilchensysteme stehen im Mittelpunkt vieler Forschungsfelder der Physik, Chemie, Materialwissenschaften und verwandter Disziplinen. In der Tat werden die meisten Materialeigenschaften durch das komplexe quantenmechanische Verhalten von wechselwirkenden Elektronen bestimmt. Die mathematischen Grundgleichungen zur Beschreibung elektronischer Strukturen sind zwar im Prinzip seit langem bekannt, aber zu komplex, um sie tatsächlich lösen zu können. Daher ist das konkrete Verständnis von zum Beispiel raffiniert aufgebauten Materialien sehr begrenzt geblieben.

Diese unbefriedigende Situation hat sich mit dem Aufkommen moderner Hochleistungscomputercluster gewandelt, wodurch sich das neue Anwendungsgebiet der computergestützten Quanten-Vielteilchentheorie eröffnet hat. Ein besonders leistungsfähiges Werkzeug ist in diesem Zusammenhang die Dichtefunktionaltheorie (DFT), die nie dagewesene Einblicke in die Eigenschaften von Materialien ermöglicht hat. Die DFT gilt heute als eine der wichtigsten Simulationsmethoden in Physik, Chemie und den Materialwissenschaften. Sie eignet sich insbesondere für die Beschreibung von Vielelektronensystemen. Tatsächlich ist die Anzahl der auf DFT-Berechnungen beruhenden wissenschaftlichen Veröffentlichungen in den vergangenen zehn Jahren exponentiell gestiegen. Auch Unternehmen haben diese Methode erfolgreich eingesetzt, um Materialeigenschaften mit einer nie zuvor erreichten Genauigkeit zu berechnen.

Eine extreme Vereinfachung wird überwunden

Viele der mit DFT berechneten Eigenschaften werden im Rahmen der linearen Antworttheorie (linear response theory) ermittelt. Dieses Konzept wird auch in vielen Experimenten verwendet, bei denen die (lineare) Reaktion des betrachteten Systems auf eine äußere Störung, zum Beispiel einen Laser, gemessen wird. Auf diese Weise lässt sich das System beurteilen und wesentliche Parameter wie Dichte oder Temperatur können ermittelt werden. Die lineare Antworttheorie macht Experiment und Theorie oft überhaupt erst möglich und ist in der Physik und verwandten Disziplinen nahezu allgegenwärtig. Dennoch basiert sie auf einer extremen Vereinfachung der Prozesse und stellt somit eine erhebliche Einschränkung dar.

Indem sie die DFT-Methode über den vereinfachten linearen Bereich hinaus erweitern, setzen die Wissenschaftler mit ihrer jüngsten Publikation neue Maßstäbe. So können erstmals nichtlineare Effekte wie Dichtewellen, Bremsvermögen und Strukturfaktoren berechnet und mit experimentellen Ergebnissen an echten Materialien verglichen werden.

Bislang konnten diese nichtlinearen Effekte nur durch eine Reihe aufwendiger Berechnungsmethoden, nämlich Quanten-Monte-Carlo-Simulationen, reproduziert werden. Diese Methoden liefern exakte Ergebnisse. Da sie aber eine hohe Rechenleistung erfordern, werden sie durch systembedingte Parameter eingeschränkt. Daher bestand ein dringender Bedarf an schnelleren Simulationsmethoden. „Der DFT-Ansatz, den wir in unserer Arbeit vorstellen, ist 1.000 bis 10.000 Mal schneller als die Quanten-Monte-Carlo-Berechnung“, sagt Zhandos Moldabekov. „Außerdem konnten wir für alle Temperaturbereiche von Umgebungstemperatur bis hin zu extremen Bedingungen nachweisen, dass dieser Geschwindigkeitsgewinn nicht zu Lasten der Genauigkeit geht. Die DFT-basierte Methodik des nichtlinearen Reaktionsverhaltens quantenkorrelierter Elektronen eröffnet die verlockende Möglichkeit, neue nichtlineare Phänomene in komplexen Materialien zu untersuchen.“

Mehr Möglichkeiten für moderne Freie-Elektronen-Laser

„Wir sehen, dass unsere neue Methodik sehr gut zu den Möglichkeiten moderner Experimentieranlagen wie der Helmholtz International Beamline for Extreme Fields passt, die erst kürzlich in Betrieb genommen wurde und vom HZDR mitbetrieben wird“, erklärt Jan Vorberger. „Mit Hochleistungslasern und Freie-Elektronen-Lasern können wir genau diese nichtlinearen Anregungen erzeugen, die wir jetzt theoretisch untersuchen können, und sie mit einer noch nie dagewesenen zeitlichen und räumlichen Auflösung erforschen. Theoretische und experimentelle Werkzeuge stehen bereit, um neue Effekte in der Materie unter extremen Bedingungen zu untersuchen, die bisher nicht zugänglich waren.“

„Diese Arbeit ist ein gutes Beispiel für die Ausrichtung meiner kürzlich gegründeten Gruppe“, sagt Tobias Dornheim, Leiter der Anfang 2022 eingerichteten Nachwuchsgruppe „Frontiers of Computational Quantum Many-Body Theory (Grenzen der rechnergestützten Quanten-Vielteilchentheorie)“. „In den vergangenen Jahren waren wir vor allem in der Community der Hochenergiedichte-Physik aktiv. Jetzt wollen wir die Grenzen der Wissenschaft erweitern, indem wir rechnerische Lösungen für Quanten-Vielteilchen-Probleme in vielen verschiedenen Kontexten anbieten. Wir glauben, dass die vorgelegte Neuerung für die Theorie der elektronischen Struktur für Fachleute zahlreicher Wissenschaftsfelder von Nutzen sein wird.“

Publikation:
Z. Moldabekov, J. Vorberger, T. Dornheim, Density Functional Theory Perspective on the Nonlinear Response of Correlated Electrons across Temperature Regimes, in Journal of Chemical Theory and Computation, 2022 (DOI: 10.1021/acs.jctc.2c00012)

Weitere Informationen:

Dr. Tobias Dornheim | Nachwuchsgruppenleiter

Center for Advanced Systems Understanding (CASUS) am HZDR

E-Mail: t.dornheim@hzdr.de

Pressekontakt:

Dr. Martin Laqua | Referent Kommunikation, Presse- und Öffentlichkeitsarbeit

Center for Advanced Systems Understanding (CASUS) am HZDR

Mobil: +49 1512 807 6932 | E-Mail: m.laqua@hzdr.de

Das CASUS wurde 2019 in Görlitz gegründet und betreibt digitale interdisziplinäre Systemforschung in unterschiedlichen Bereichen wie Erdsystemforschung, Systembiologie und Materialforschung. Innovative Forschungsmethoden aus Mathematik, theoretischer Systemforschung, Simulation, Daten- und Computerwissenschaft werden mit dem Ziel eingesetzt, komplexe Systeme von bisher nie dagewesener Realitätstreue abzubilden und so zur Lösung drängender gesellschaftlicher Fragen beizutragen. Kooperationspartner sind das Helmholtz-Zentrum Dresden-Rossendorf (HZDR), das Helmholtz-Zentrum für Umweltforschung in Leipzig (UFZ), das Max-Planck-Institut für molekulare Zellbiologie und Genetik in Dresden (MPI-CBG), die Technische Universität Dresden (TUD) und die Universität Wroc?aw (UWr). Das Zentrum wird aus Mitteln des Bundesministeriums für Bildung und Forschung (BMBF) sowie des Sächsischen Staatsministeriums für Wissenschaft, Kultur und Tourismus (SMWK) gefördert und wird als ein Institut des HZDR geführt. www.casus.science

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:

• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?

• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?

• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?

Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.

Es ist Mitglied der Helmholtz-Gemeinschaft, hat sechs Standorte (Dresden, Freiberg, Görlitz, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt fast 1.5000 Mitarbeiter*innen – davon etwa 670 Wissenschaftler*innen inklusive 220 Doktorand*innen.


Wissenschaftliche Ansprechpartner:

Dr. Tobias Dornheim | Nachwuchsgruppenleiter
Center for Advanced Systems Understanding (CASUS) am HZDR
E-Mail: t.dornheim@hzdr.de


Originalpublikation:

Z. Moldabekov, J. Vorberger, T. Dornheim, Density Functional Theory Perspective on the Nonlinear Response of Correlated Electrons across Temperature Regimes, in Journal of Chemical Theory and Computation, 2022 (DOI: 10.1021/acs.jctc.2c00012)


Weitere Informationen:

https://www.hzdr.de/presse/new_paradigm_for_electron_simulations


Merkmale dieser Pressemitteilung:
Journalisten
Chemie, Informationstechnik, Physik / Astronomie, Werkstoffwissenschaften
überregional
Forschungsergebnisse
Deutsch


Quelle: IDW