Innovativ: Elektrochemische Molekülsynthese gekoppelt an Wasserstoffproduktion



Teilen: 

03.04.2023 12:17

Innovativ: Elektrochemische Molekülsynthese gekoppelt an Wasserstoffproduktion

Grüner Wasserstoff gilt als sauberer Energieträger der Zukunft: Er lässt sich dezentral und mithilfe erneuerbarer Energieformen wie Sonnen- oder Windenergie ohne die Freisetzung von klimaschädlichem Kohlenstoffdioxid erzeugen. Forschende der Universität Göttingen arbeiten intensiv an Systemen, in denen die elektrochemische Wasserstoffproduktion an die Umwandlung von Kohlenstoff-Wasserstoff-Bindungen gekoppelt wird. Um den Verlauf derartiger Reaktionen zu kontrollieren, wurden in der Vergangenheit seltene Metalle als Katalysatoren eingesetzt. In einem neuen Verfahren dient hingegen preiswertes Cobalt als Katalysator.

Forschungsteam der Universität Göttingen entwickelt neuartiges Verfahren mit preiswertem Cobalt

(pug) Grüner Wasserstoff gilt als sauberer Energieträger der Zukunft: Er lässt sich dezentral und mithilfe erneuerbarer Energieformen wie Sonnen- oder Windenergie ohne die Freisetzung von klimaschädlichem Kohlenstoffdioxid erzeugen. Forschende der Universität Göttingen arbeiten intensiv an Systemen, in denen die elektrochemische Wasserstoffproduktion an die Umwandlung von Kohlenstoff-Wasserstoff-Bindungen gekoppelt wird. Um den Verlauf derartiger Reaktionen zu kontrollieren, wurden in der Vergangenheit seltene Metalle als Katalysatoren eingesetzt. In einem neuen Verfahren dient hingegen preiswertes Cobalt als Katalysator. Die Ergebnisse sind in der Fachzeitschrift Science erschienen.

Die Umwandlung von eigentlich unreaktiven Kohlenstoff-Wasserstoff-Bindungen gewinnt in verschiedenen Zusammenhängen an Bedeutung und ist ein Forschungsschwerpunkt der Gruppe um Prof. Dr. Lutz Ackermann von der Fakultät für Chemie. Eine große Herausforderung ist dabei die vollständige Selektivitätskontrolle, besonders zur Vermeidung unerwünschter Enantiomere. Diese Moleküle verhalten sich in ihrer räumlichen Struktur wie ein Spiegelbild zu den gewünschten Molekülen. „Die volle Selektivitätskontrolle ist fundamental, zum Beispiel für die Entwicklung neuer Medikamente“, betont Ackermann.

Im nun erforschten Ansatz ermöglicht Cobalt die gezielte Bildung des gewünschten Moleküls. Die verschiedenen Reaktionsschritte sind gut kontrollierbar, was das Verfahren besonders effizient macht. Mit einem Solarpanel kann die Energie für die chemische Reaktion aus Sonnenlicht gewonnen werden. Zudem haben die Forschenden den Reaktionsverlauf genau untersucht und dadurch Einblicke in den Mechanismus gewonnen.
„Unser Ansatz ist ein kraftvolles Werkzeug zur ressourceneffizienten Molekülsynthese mit gleichzeitiger Wasserstoffproduktion“, ist Ackermann überzeugt. „Außerdem eröffnet er Chancen für zahlreiche Einsatzzwecke. Gezieltes Katalysatordesign gibt uns Zugang zu diversen chiralen Molekülmotiven.“ Die Forschungsgruppe arbeitet aufbauend auf ihren Erkenntnissen weiter in diesem wichtigen Forschungsgebiet.

Originalveröffentlichung: Tristan von Münchow et al. Enantioselective electrochemical cobalt-catalyzed aryl C–H activation reactions. Science (2023). DOI: 10.1126/science.adg2866

Kontakt:
Prof. Dr. Lutz Ackermann
Georg-August-Universität Göttingen
Institut für Organische und Biomolekulare Chemie
Tammannstraße 2, 37077 Göttingen
Telefon: (0551) 39-33202
E-Mail: lutz.ackermann@chemie.uni-goettingen.de
Internet: http://www.uni-goettingen.de/de/50118.html


Wissenschaftliche Ansprechpartner:

Prof. Dr. Lutz Ackermann
Georg-August-Universität Göttingen
Institut für Organische und Biomolekulare Chemie
Tammannstraße 2, 37077 Göttingen
Telefon: (0551) 39-33202
E-Mail: lutz.ackermann@chemie.uni-goettingen.de
Internet: http://www.uni-goettingen.de/de/50118.html


Originalpublikation:

Tristan von Münchow et al. Enantioselective electrochemical cobalt-catalyzed aryl C–H activation reactions. Science (2023). DOI: 10.1126/science.adg2866


Weitere Informationen:

https://www.uni-goettingen.de/de/3240.html?id=7044


Bilder

Publikationsteam (von links): Tristan von Münchow, Suman Dana, Yang Xu, Binbin Yuan, Prof. Dr. Lutz Ackermann

Publikationsteam (von links): Tristan von Münchow, Suman Dana, Yang Xu, Binbin Yuan, Prof. Dr. Lutz
Simon Homölle
Simon Homölle/Universität Göttingen


Merkmale dieser Pressemitteilung:
Journalisten
Chemie, Energie
überregional
Forschungsergebnisse
Deutsch


 

Quelle: IDW