Molekulare Waage auf biologischen Membranen: Mass-Sensitive Particle Tracking



Teilen: 

04.10.2021 17:33

Molekulare Waage auf biologischen Membranen: Mass-Sensitive Particle Tracking

Ein Großteil biologisch relevanter Prozesse findet an Membranen statt. Die Dynamik dieser Prozesse in Echtzeit und ohne Störung des biologischen Systems zu studieren, ist bis heute eine große methodische Herausforderung. Ein Team um Petra Schwille, Direktorin am Max-Planck-Institut für Biochemie (MPIB), und Nikolas Hundt von der Ludwig-Maximilians-Universität München (LMU) hat hierfür nun eine neue Methode entwickelt: Mass-Sensitive Particle Tracking (MSPT). Mit MSPT lassen sich die Bewegungen und Reaktionen einzelner unmarkierter Proteine auf biologischen Membranen allein über ihre Masse bestimmen. Die Methode wurde in Nature Methods veröffentlicht.

Literature advertisement

Plötzlich gesund

Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‘Wissenschaft’, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.

Hier geht es weiter …

Zelluläre Prozesse an Membranen sind oft schnell und kurzlebig. Moleküle verbinden sich kurzzeitig, trennen sich wieder, interagieren mit unterschiedlichen Partnern und bewegen sich entlang der Membran oder durch sie hindurch. Daher ist es bei diesen Vorgängen wichtig, nicht nur statische Momentaufnahmen zu untersuchen, sondern die ablaufenden Prozesse in ihrer Dynamik zu verstehen. Wie jedoch gelingt dies methodisch? Petra Schwille vom MPIB und Nikolas Hundt von der LMU haben gemeinsam mit ihrem Team die Methode Mass-Sensitive Particle Tracking – MSPT entwickelt, die es erlaubt, Proteine während dynamischer Prozesse an Membranen zu analysieren.

Analyse dynamischer Prozesse an biologischen Membranen
Die Biophysiker:innen gingen zunächst von neuen Entwicklungen in der Massenphotometrie aus, mit Hilfe derer bereits die molekulare Masse von unmarkierten Molekülen in Lösung bestimmt werden konnte. Neu bei MSPT ist, dass nun auch die Dynamiken von membranassoziierten Proteinen in ihrer biologisch plausiblen Umgebung nachverfolgt werden können. Dabei werden einzelne Proteine über ihre molekulare Masse identifiziert, ohne dass sie markiert werden müssen. Frederik Steiert, einer der Erstautor:innen der Publikation, sagt: „Wir können nun direkt an biologischen Membranen verfolgen, welche Masse einzelne Proteine haben, wie sie sich bewegen und wie sie interagieren. So können wir die Dynamik biologischer Systeme genauer untersuchen.“ Das Analysieren von dynamischen Vorgängen ist in der Biologie besonders wichtig, da viele Vorgänge an der Membran sehr kurzlebig sind.

Massenbestimmung durch Lichtstreuung
Auf welchen Prinzipien basiert die neue Methode? Wenn Licht auf ein Partikel trifft, wird dieses gestreut. Die Intensität des gestreuten Lichtes hängt von der Masse des Partikels ab. Am Mikroskop werden Videos aufgezeichnet, in denen einzelne Proteine auf Membranen direkt sichtbar gemacht werden. Mithilfe einer Analysesoftware können sie verfolgt und ihr Streusignal, und somit die Masse, bestimmt werden. Möglich ist dies aktuell bei Proteinen deren Molekulargewicht mindestens 50 kDa beträgt, also für einen großen Teil der bekannten Proteine. Ein weiterer Vorteil der neuen MSPT Methode besteht darin, dass Proteine nicht speziell gekennzeichnet – „gelabelt“ – werden müssen. Labeln lassen sich Moleküle beispielsweise durch das Anbringen fluoreszierender Markierungen. Allerdings besteht beim Labeln die Gefahr, dass Proteine in ihrer Funktion beeinträchtigt werden oder die fluoreszierenden Markierungen während der Untersuchung ausbleichen. Bei MSPT hingegen werden methodische Probleme, die durch das Labeln entstehen können, ausgeschlossen.

MinDE Proteinsystem
Um das Potenzial der Methode für biologische Fragestellungen zu demonstrieren, nutzten die Biophysiker:innen ein etabliertes System aus dem Schwille-Labor: Das MinDE Proteinsystem aus dem Bakterium Escherichia coli (E. coli). Die Proteine MinD und MinE sind an der Zellteilung von E. coli beteiligt. Tamara Heermann, eine weitere Erstautorin, berichtet: „Die Methode ermöglicht es bisher nicht messbare Eigenschaften von dynamischen Systemen zu charakterisieren. Dadurch konnten wir nicht nur etablierte Kenntnisse über das Min-System verifizieren, sondern auch neue hinzugewinnen.“ Durch MSPT konnte das Team zeigen, dass die Komplexe aus MinD Proteinen größer sind als zunächst angenommen. Zudem liefern die Experimente erste Erkenntnisse, dass MinE als Verbindungsstück für MinD Proteine fungieren und so eine Membranfreisetzung von größeren Komplexen initiieren kann.

Wie im neuen Nature Methods Artikel berichtet wird, liefert MSPT wertvolle Erkenntnisse zur Aufklärung dynamischer Prozesse an biologischen Membranen. Die Forschenden arbeiten jedoch kontinuierlich daran, die Methode noch weiter zu verbessern. So soll die Methode zukünftig auch auf integralen Membranproteinen anwendbar sein und die Detektion noch kleinerer Proteine ermöglichen.


Wissenschaftliche Ansprechpartner:

Prof. Dr. Petra Schwille
Zelluläre und molekulare Biophysik
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried

E-Mail: schwille@biochem.mpg.de
https://www.biochem.mpg.de/de/schwille


Originalpublikation:

T. Heermann, F. Steiert, B. Ramm, N. Hundt and P. Schwille: Mass-sensitive particle tracking to elucidate the membrane-associated MinDE reaction cycle, Nature Methods, Oktober 2021
DOI: 10.1038/s41592-021-01260-x


Merkmale dieser Pressemitteilung:
Journalisten, Studierende, Wissenschaftler, jedermann
Biologie, Chemie, Medizin
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch


Quelle: IDW