Photobatterie erreicht wettbewerbsfähige Spannung



Teilen: 

03.11.2023 13:54

Photobatterie erreicht wettbewerbsfähige Spannung

• Forscher*innen der Universitäten Freiburg und Ulm haben eine monolithisch integrierte Photobatterie aus organischen Materialien entwickelt.

• Sie ist die erste monolithisch integrierte Photobatterie aus organischen Materialien, die eine Entladespannung von 3,6 Volt erreicht.

• Damit gehört sie zu den ersten Systemen dieser Art, die Kleinstgeräte betreiben können.

Vernetzte intelligente Geräte und Sensoren können die Energieeffizienz von Konsumgütern und Gebäuden verbessern, indem sie deren Verbrauch in Echtzeit überwachen. Solche kleinen Geräte, wie sie unter dem Begriff des Internets der Dinge entwickelt werden, sind auf möglichst kompakt gestaltete Energiequellen angewiesen, um autonom zu funktionieren. Hierfür könnten monolithisch integrierte Batterien zum Einsatz kommen, welche Energie in einem einzelnen System gleichzeitig gewinnen, wandeln und speichern. Ein Team von Wissenschaftler*innen hat im Rahmen seiner Forschung im Exzellenzcluster Living, Adaptive and Energy-autonomous Materials Systems (livMatS) der Universität Freiburg eine monolithisch integrierte Photobatterie entwickelt, die aus einer organischen Polymerbatterie und einer organischen Mehrfachsolarzelle besteht. Die von Rodrigo Delgado Andrés und Dr. Uli Würfel, Universität Freiburg, sowie Robin Weßling und Prof. Dr. Birgit Esser, Universität Ulm, vorgestellte Batterie ist die erste monolithisch integrierte Photobatterie aus organischen Materialien, die eine Entladespannung von 3,6 Volt erreicht. Damit gehört sie zu den ersten Systemen dieser Art, die Kleinstgeräte betreiben können. Die Ergebnisse sind in der Fachzeitschrift Energy & Environmental Science erschienen.

Kombination aus Mehrfachsolarzelle und Dual-Ion-Battery

Die Forschenden haben für die Photobatterie ein skalierbares Verfahren entwickelt, mit dem sie organische Solarzellen aus fünf aktiven Schichten herstellen können. „Mit dieser Solarzelle erreicht das System vergleichsweise hohe Spannungen von bis zu 4,2 Volt“, erläutert Weßling. Diese Mehrfachsolarzelle hat das Team mit einer sogenannten Dual-Ion-Battery kombiniert, die im Gegensatz zu Kathoden konventioneller Lithium-Batterien in der Lage ist, mit hohen Strömen geladen zu werden. Bei sorgfältiger Kontrolle der Beleuchtungsintensität und Entladungsraten, kann die so aufgebaute Photobatterie eine Schnellladung in weniger als 15 Minuten bei Entladekapazitäten von bis zu 22 Milliamperestunden pro Gramm (mAh g-1) erreichen. In Verbindung mit dem durchschnittlichen Entladepotenzial von 3,6 Volt kann das Gerät eine Energiedichte von 69 Milliwattstunden pro Gramm (mWh g-1) und eine Leistungsdichte von 95 Milliwatt pro Gramm (mW g-1) liefern. „Damit legt das entwickelte System den Grundstein für die tiefergehende Forschung und weitere Entwicklungen im Bereich organischer Photobatterien“, sagt Weßling.

Über den Exzellenzcluster livMatS

Die Vision des Exzellenzclusters Living, Adaptive and Energy-autonomous Materials Systems (livMatS) ist, das Beste aus zwei Welten – der Natur und der Technik – zu verbinden. livMatS entwickelt lebensähnliche Materialsysteme, die von der Natur inspiriert sind. Diese Systeme werden sich autonom an Umweltbedingungen anpassen, saubere Energie aus ihrer Umgebung gewinnen und unempfindlich gegen Beschädigungen sein oder diese selbstständig ausgleichen.

• Originalpublikation: Andrés, R. D., Wessling, R., Büttner, J., Pap, L., Fischer, A., Esser, B., & Würfel, U. (2023). Organic photo-battery with high operating voltage using a multi-junction organic solar cell and an organic redox-polymer-based battery. Energy & Environmental Science. DOI: 10.1039/d3ee01822a

• Prof. Dr. Birgit Esser leitet die Professur für Organische Chemie am Institut für Organische Chemie II und Neue Materialien der Universität Ulm. Sie ist Mitglied in den Exzellenzclustern Post Lithium Storage (POLiS) der Universität Ulm und Living, Adaptive and Energy-autonomous Materials Systems (livMatS) der Universität Freiburg.

• Dr. Uli Würfel leitet die Gruppe „Organische und Perowskitsolarzellen“ am FMF und FIT der Universität Freiburg und ist Mitglied des Exzellenzclusters livMatS der Universität Freiburg. Zudem leitet er die Abteilung „Organische und Perowskit-Photovoltaik“ des Fraunhofer-Instituts für Solare Energiesysteme (ISE).

• Rodrigo Delgado Andrés promoviert bei Dr. Uli Würfel im Exzellenzcluster livMatS.

• Robin Weßling promoviert bei Prof. Dr. Birgit Esser im Exzellenzcluster livMatS.

• Die Studie wurde durch die Deutsche Forschungsgemeinschaft (DFG) finanziert (livMatS – EXC 2193).


Wissenschaftliche Ansprechpartner:

Kontakt:

Hochschul- und Wissenschaftskommunikation
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-4302
E-Mail: kommunikation@zv.uni-freiburg.de


Originalpublikation:

https://pubs.rsc.org/en/Content/ArticleLanding/2023/EE/D3EE01822A


Weitere Informationen:

https://kommunikation.uni-freiburg.de/pm/2023/dr-julian-rapp-ist-preistraeger-de…


Bilder

Die monolithisch integrierte Photobatterie aus organischen Materialien erreicht eine Entladespannug von 3,6 Volt. Bild: Robin Weßling

Die monolithisch integrierte Photobatterie aus organischen Materialien erreicht eine Entladespannug

Robin Weßling


Merkmale dieser Pressemitteilung:
Journalisten
Elektrotechnik, Energie, Werkstoffwissenschaften
überregional
Forschungs- / Wissenstransfer, Forschungsergebnisse
Deutsch


 

Quelle: IDW