Wärmekraftmaschinen in der Mikrowelt

Wärmekraftmaschinen in der Mikrowelt


Teilen: 

23.08.2019 12:23

Wärmekraftmaschinen in der Mikrowelt

Die von mikroskopischen Wärmekraftmaschinen erzeugte Energie kann nur teilweise sinnvoll genutzt werden – Veröffentlichung in Physical Review Letters.

Wärmekraftmaschinen – ein grundlegendes physikalisches Konzept mit direkten technischen Anwendungen – wandeln Wärmeenergie in nutzbare Arbeit um, zum Beispiel zum Antrieb eines Fahrzeuges. Verschiedene Typen von Wärmekraftmaschinen wie Verbrennungsmotoren oder Turbinen erleichtern unser modernes Leben und bestimmen es sogar zu einem großen Teil. So unterschiedlich diese Typen sind, so werden sie doch einheitlich von den gleichen physikalischen Gesetzen – der Thermodynamik – beschrieben. Versucht man jedoch solche Maschinen auf mikroskopische oder sogar atomare Skalen zu verkleinern, gelten andere Gesetzmäßigkeiten: Hier treten Fluktuationen auf, das heißt der Betrieb einer solchen Maschine ist nicht gleichmäßig und einem gewissen Maß an Zufall unterworfen.

Mainzer Forscher um Dr. Ulrich Poschinger und Prof. Dr. Ferdinand Schmidt-Kaler haben ein experimentelles Szenario durchgespielt, in dem dieser Sachverhalt klar zutage tritt. Ein einzelnes gefangenes atomares Ion fungiert als Wärmekraftmaschine, indem es mit Laserstrahlung abwechselnd gekühlt und aufgeheizt wird. Die dabei gewonnene Energie wird in Schwingungen dieses Ions übersetzt und gespeichert. Nach einigen Operationszyklen wird der physikalische Zustand dieser Schwingungen vollständig rekonstruiert. Die Analyse der experimentellen Daten, in Zusammenarbeit mit den theoretischen Physikern Dr. Mark Mitchison und Prof. Dr. John Goold vom Trinity College Dublin, zeigen, dass nur ein Teil der gewonnenen Energie sinnvoll weiterverwendet werden könnte, der andere Teil manifestiert sich in zufälligen thermischen Bewegungen des Ions.

Diese Ergebnisse sind ein Mainzer Beitrag im Rahmen der Forschergruppe 2724 „Thermische Maschinen in der Quantenwelt“ und wurden als Highlight im aktuellen Band des internationalen Journals Physical Review Letters publiziert. Die Ergebnisse bilden eine wichtige Basis zum Verständnis von Energietransferprozessen in mikroskopischen Systemen und ebnen den Weg zu weiterführenden Studien, die den Einfluss der Quantenphysik auf solche Systeme und Prozesse zeigen sollen.

Bildmaterial:
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_waermekraftmaschine_ion….
Einzel-Ionen Wärmekraftmaschine: Der Spin eines Leuchtelektrons (grüner Pfeil) wird von Lasern abwechselnd erwärmt und gekühlt. Die dabei fließende Wärme wird in einem „Schwungrad“ gespeichert, das durch die Bewegung des Ions gegeben ist.
Abb./©: QUANTUM, Institut für Physik, JGU


Wissenschaftliche Ansprechpartner:

Dr. Ulrich Poschinger
Quanten-, Atom- und Neutronenphysik (QUANTUM)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-25954
E-Mail: poschin@uni-mainz.de
https://www.quantenbit.physik.uni-mainz.de/members-of-ag-schmidt-kaler/


Originalpublikation:

David von Lindenfels et al.
A spin heat engine coupled to a harmonic-oscillator flywheel
Physical Review Letters, 22. August 2019
DOI: 10.1103/PhysRevLett.123.080602
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.080602
https://physics.aps.org/synopsis-for/10.1103/PhysRevLett.123.080602


Weitere Informationen:

https://www.quantenbit.physik.uni-mainz.de/ – Quantenbit AG an der JGU


Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Elektrotechnik, Energie, Physik / Astronomie, Werkstoffwissenschaften
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch


Quelle: IDW