12.11.2019 16:26
Faserverstärkte Verbundstoffe schnell und präzise durchleuchten
Forschende des Paul Scherrer Instituts PSI haben eine Methode der Röntgenkleinwinkelstreuung so verbessert, dass sie nun bei der Entwicklung oder der Qualitätskontrolle neuartiger faserverstärkter Verbundstoffe eingesetzt werden kann. Dadurch können künftig nicht nur Röntgenstrahlen aus besonders leistungsfähigen Quellen wie der Synchrotron Lichtquelle Schweiz SLS für die Untersuchung entsprechender Materialien genutzt werden, sondern auch jene aus herkömmlichen Röntgenröhren. Ihre Ergebnisse veröffentlichen die Forschenden nun im Fachmagazin Nature Communications.
Neuartige faserverstärkte Verbundstoffe gewinnen als stabile und gleichzeitig leichte Materialien zunehmend an Bedeutung. Ein Beispiel für diese Art von Verbundstoffen sind kohlenstofffaserverstärkte Kunststoffe (CFK), die beispielsweise im Flugzeugbau oder bei der Konstruktion von Formel-1-Rennwagen und Sportfahrrädern eingesetzt werden. Die Eigenschaften dieser Materialien hängen massgeblich davon ab, wie die Fasern ausgerichtet sind und wie sie sich im umgebenden Material zueinander anordnen. Sie beeinflussen beispielsweise das mechanische, optische oder elektromagnetische Verhalten von Verbundstoffen.
Will man die Zusammensetzung solcher Verbundstoffe beobachten, muss man zwangsläufig in sie hineinschauen. Dafür kann man die sogenannte Röntgenkleinwinkelstreuung verwenden, Englisch: small angle X-ray scattering (SAXS), und damit ausnutzen, dass Röntgenstrahlen beim Durchdringen von Materie gestreut werden. Aus dem so entstehenden Streuungsmuster lassen sich Informationen über das Innere einer Probe ermitteln und eventuell über die Orientierung der Fasern. Die herkömmlichen Verfahren der SAXS haben allerdings den Nachteil, dass sie sehr langsam sind: Es kann nämlich mehrerer Stunden dauern, um wenige Zentimeter einer Probe fortlaufend in der notwendigen Auflösung zu durchleuchten.
Das Verknoten eines Kohlefaserbandes beobachten
Forschenden des Paul Scherrer Instituts PSI und der ETH Zürich ist es nun gemeinsam mit Kollegen der EPF Lausanne und dem dänischen Spin-off-Unternehmen Xnovo Technology gelungen, die Technik für die praxisnahe Anwendung weiterzuentwickeln. «Dadurch ist es möglich, mehrere lokale Streuungsmuster zu erkennen, die die räumliche Innenstruktur einer Probe mit nur einem Röntgenbild widerspiegeln, sodass wir eine grosse Anzahl von aufeinanderfolgenden Bildern aufnehmen können”, sagt Matias Kagias, Erfinder der Methode und Postdoc in der PSI-Röntgentomografiegruppe unter der Leitung von Marco Stampanoni. Als prinzipiellen Beweis für ihr Funktionieren nutzten die Forscher das neue Verfahren, um die Ausrichtung der Fasern in einem Kohlefaserband während des Knotenprozesses darzustellen. Sie nahmen zeitaufgelöste Röntgenprojektionen mit 25 Bildern pro Sekunde über einen Zeitraum von 11 Sekunden auf.
Anwendung in der Medizin oder für die innere Sicherheit denkbar
Die neue Methode funktioniert darüber hinaus nicht nur mit Röntgenstrahlen aus Beschleunigeranlagen wie der Synchrotron Lichtquelle Schweiz SLS, sondern auch mit Strahlen aus herkömmlichen Röntgenröhren. «Es wird daher erwartet, dass dieser neuartige Ansatz konkrete Anwendung in Medizinprodukten, bei der zerstörungsfreien Prüfung sowie im Bereich der inneren Sicherheit finden wird”, so Marco Stampanoni, Leiter der Forschungsgruppe Röntgentomografie.
Ihre Ergebnisse veröffentlichen die Forschenden nun im Fachmagazin Nature Communications.
Text: Paul Scherrer Institut/Sebastian Jutzi
————————————————————————–
Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 2100 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 407 Mio. Das PSI ist Teil des ETH-Bereichs, dem auch die ETH Zürich und die ETH Lausanne angehören sowie die Forschungsinstitute Eawag, Empa und WSL.
Wissenschaftliche Ansprechpartner:
Prof. Marco Stampanoni
Leiter Forschungsgruppe Röntgentomografie
Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 47 24, E-Mail: marco.stampanoni@psi.ch [Deutsch, Englisch]
Dr. Matias Kagias
Forschungsgruppe Röntgentomografie
Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 51 20, E-Mail: matias.kagias@psi.ch [Englisch]
Originalpublikation:
Diffractive small angle X-ray scattering imaging for anisotropic structures
Matias Kagias, Zhentian Wang, Mie Elholm Birkbak, Erik Lauridsen, Matteo
Abis, Goran Lovric, Konstantins Je_movs, Marco Stampanoni
Nature Communications, 12.11.2019
DOI: 10.1038/s41467-019-12635-2
Weitere Informationen:
https://www.psi.ch/de/node/31203 – Darstellung der Mitteilung auf der Webseite des PSI und Bildmaterial
Merkmale dieser Pressemitteilung:
Journalisten
Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch