05.11.2021 09:00
Neuer Sensor kann immer kleinere Nanoteilchen erkennen
Nanoteilchen sind in unserer Umgebung allgegenwärtig: Viren in der Raumluft, Proteine im Körper, als Bausteine neuer Materialien etwa für die Elektronik oder in Oberflächenbeschichtungen. Wer die winzigen Partikel sichtbar machen will, hat ein Problem: Sie sind so klein, dass man sie unter einem optischen Mikroskop meist nicht sieht. Forschende am Karlsruher Institut für Technologie (KIT) haben einen Sensor entwickelt, mit dem sie Nanoteilchen nicht nur aufspüren, sondern auch ihre Beschaffenheit bestimmen und ihre räumliche Bewegung nachverfolgen können. Ihren neuartigen Fabry-Pérot Resonator präsentieren sie in der Zeitschrift Nature Communications (DOI: 10.1038/s41467-021-26719-5).
Plötzlich gesund
Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‘Wissenschaft’, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.
Gängige Mikroskope erzeugen stark vergrößerte Bilder von kleinen Strukturen oder Objekten mit Hilfe von Licht. Weil die Nanoteilchen aufgrund ihrer Winzigkeit aber kaum Licht absorbieren oder streuen, bleiben sie unsichtbar. Optische Resonatoren hingegen verstärken die Wechselwirkung zwischen Licht und Nanoteilchen: Sie halten Licht auf kleinem Raum gefangen, indem es tausende Male zwischen zwei Spiegeln reflektiert wird. Befindet sich ein Nanoteilchen in dem gefangenen Lichtfeld, dann wechselwirkt das Nanoteilchen tausende Male mit dem Licht, so dass die Änderung der Lichtintensität messbar wird. „Weil das Lichtfeld an verschiedenen Stellen im Raum unterschiedliche Intensitäten hat, können wir Rückschlüsse auf die Position des Nanoteilchens im dreidimensionalen Raum ziehen“, sagt Dr. Larissa Kohler vom Physikalischen Institut am KIT.
Resonator macht Bewegungen der Nanoteilchen sichtbar
Und nicht nur das: „Wenn sich ein Nanoteilchen in Wasser befindet, stößt es mit den Wassermolekülen zusammen, welche sich aufgrund von thermischer Energie in willkürliche Richtungen bewegen. Durch die Stöße führt das Nanoteilchen eine Art Zitterbewegung aus. Auch diese Brownsche Bewegung können wir nun nachvollziehen“, so die Expertin. „Bislang konnte mit einem optischen Resonator nicht die räumliche Bewegung eines Nanoteilchens nachverfolgt werden, sondern man konnte nur sagen, dass sich das Teilchen im Lichtfeld befindet oder nicht“, erläutert Kohler. Obendrein eröffne der neuartige faserbasierte Fabry-Pérot Resonator, bei dem sich die hochreflektierenden Spiegel auf den Endflächen von Glasfasern befinden, die Möglichkeit, aus der dreidimensionalen Bewegung den hydrodynamischen Radius des Teilchens, also die Dicke der es umgebenden Hülle aus Wasser, abzuleiten. Das ist entscheidend, weil diese die Eigenschaften des Nanoteilchens verändert. „Zum Beispiel können aufgrund der Hydrathülle noch Nanoteilchen detektiert werden, die ohne diese Hülle zu klein wären“, sagt Kohler. Ebenso könnte die Hydrathülle um Proteine oder andere biologische Nanoteilchen einen Einfluss bei biologischen Vorgängen haben.
Sensor ermöglicht Einblicke in biologische Vorgänge
Einsatzmöglichkeiten für ihren Resonator sehen die Forschenden bei der zukünftigen Detektion der dreidimensionalen Bewegung mit hoher zeitlicher Auflösung und der Charakterisierung der optischen Eigenschaften von biologischen Nanoteilchen, wie zum Beispielen Proteinen, DNA-Origami oder Viren. Der Sensor könnte damit Einblicke in noch nicht verstandene biologische Vorgänge ermöglichen.
Originalpublikation
Larissa Kohler, Matthias Mader, Christian Kern, Martin Wegener, David Hunger: Tracking Brownian motion in three dimensions and characterization of individual nanoparticles using a fiber-based high-finesse microcavity. Nature Communications, 2021. DOI: 10.1038/s41467-021-26719-5
https://www.nature.com/articles/s41467-021-26719-5
Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 600 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 23 300 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.
Wissenschaftliche Ansprechpartner:
Dr. Felix Mescoli
Pressereferent
Tel.: +49 721 608 41171
felix.mescoli@kit.edu
Originalpublikation:
https://www.nature.com/articles/s41467-021-26719-5
Weitere Informationen:
https://www.kit.edu/kit/pi_2021_101_neuer-sensor-kann-immer-kleinere-nanoteilche…
Merkmale dieser Pressemitteilung:
Journalisten
Biologie, Elektrotechnik, Medizin, Physik / Astronomie
überregional
Forschungsergebnisse
Deutsch