Proton-Paradoxon: Sind Physiker auf unbekanntes Naturgesetz gestoßen?

Heidelberg. Zwei Experimente lieferten verschiedene Werte für den Radius des Protons. Messfehler halten die Physiker mittlerweile für praktisch ausgeschlossen. Sind sie auf ein bislang unbekanntes physikalisches Phänomen gestoßen?

Das Proton muss doch längst perfekt verstanden sein! Es ist einer der Hauptbestandteile aller Materie, die uns umgibt, der Brennstoff der Sterne im Universum. Es ist der positiv geladene Kern des Wasserstoffatoms, des am besten untersuchten Atoms überhaupt. Das Teilchen wurde in zahllosen Experimenten genauestens vermessen, und auch am Large Hadron Collider (LHC) des europäischen Teilchenforschungszentrums CERN bei Genf sind es Protonen, die wir bei höchsten Energien miteinander kollidieren lassen, um neue Teilchen wie das Higgs-Boson entstehen zu lassen.

Kann das Proton also keine Überraschungen mehr für uns bereithalten? Weit gefehlt. Zusammen mit anderen Physikern haben Jan Bernauer und Randolf Pohl, die Autoren von “Das Proton-Paradox”, Titelgeschichte der April-Ausgabe 2014 von Spektrum der Wissenschaft, in den letzten Jahren die bislang präzisesten Messungen des Radius dieses Partikels vorgenommen. Anfangs erwarteten sie, durch die zwanzigfach höhere Genauigkeit dem lange bekannten Wert des Protonenradius lediglich die eine oder andere Nachkommastelle hinzuzufügen. Das war ein Irrtum. Vielmehr lieferten die beiden Experimente, bei denen unterschiedliche Messverfahren zum Einsatz kamen, zwei Werte, die deutlich voneinander abweichen: nämlich um mehr als das Fünffache der so genannten kombinierten Messunsicherheit. Die Wahrscheinlichkeit, dass dies nur ein Zufall ist, beträgt weniger als eins in einer Million.

Während Jan Bernauer seine Messungen als Doktorand am Institut für Kernphysik der Universität Mainz durchführte – heute forscht er am Laboratory for Nuclear Science des Massachusetts Institute of Technology in Boston –, arbeitete Randolf Pohl vom Max-Planck-Institut für Quantenoptik in Garching an einem Beschleuniger des Paul Scherrer Instituts im schweizerischen Villigen. Immer neue technische und organisatorische Probleme hatten die Realisierung des neuartigen Messverfahrens, auf das er seine Hoffnungen setzte, auf Jahre verzögert. Statt mit gewöhnlichem Wasserstoff arbeitete er mit Wasserstoff, in dem statt eines Elektrons dessen 200-mal schwerer Vetter, ein Myon, das Proton umkreist.

Als aber endlich doch alles funktionierte, war das Resultat frustrierend: Die Forscher maßen kein einziges Signal. “Wir überlegten fieberhaft”, berichtet Pohl. “Könnten die Ursachen unseres Problems tiefer liegen als wir bis dahin vermutet hatten? Was wäre denn, wenn wir nach dem Protonenradius an der falschen Stelle, also bei den falschen Wellenlängen unseres Lasers, suchten? Wir beschlossen, unseren Suchradius zu erweitern. Doch in welche Richtung? Gemeinsam fassten wir den Entschluss, nach einem größeren Protonenradius Ausschau zu halten. Doch etwas später an diesem Abend kam mein Kollege Aldo Antognini in den Kontrollraum des Beschleunigers und meinte, wir sollten stattdessen nach einem kleineren Protonenradius suchen. Zu diesem Zeitpunkt arbeiteten wir längst in 20-Stunden-Schichten.”

Da den Forschern die ihnen am Beschleuniger zugestandene Zeit davonlief, steuerten sie die experimentellen Parameter schließlich sogar in Richtung noch kleinerer Werte, als jemals vermutet worden waren. Dann die Überraschung: Die ersten Hinweise auf ein Signal tauchten auf! Die Wissenschaftler waren elektrisiert – doch das Ergebnis wich um vier Prozent von bisherigen Messungen ab; eine drastische Diskrepanz. Das Proton im myonischen Wasserstoff war deutlich kleiner als irgendjemand erwartet hätte.

In der Forschergemeinde verursachte dies einige Aufregung. Die meisten Physiker glaubten zwar schlicht, dass ein Fehler im Spiel sein müsste. Schon bald meldete sich eine ganze Reihe von ihnen mit Vorschlägen, wo er stecken könnte. Doch eine Erklärung nach der anderen schlug fehl – und jedes Mal wuchs die Bedeutung der Messergebnisse.

Mittlerweile glauben die meisten Forscher, dass die Diskrepanz tatsächlich existiert, und arbeiten an neuen, noch präziseren Experimenten. Ihre große Hoffnung: Die Ergebnisse von Bernauer und Pohl könnten auf bislang unbekannte Naturgesetze hindeuten, indem sie Hinweise auf Teilchen und Kräfte liefern, die über das so genannte Standardmodell der Teilchenphysik hinausgehen. Vielleicht enthält das Universum ja ein bislang unentdecktes Elementarteilchen, das mit Myonen anders wechselwirkt als mit Elektronen? Denn das Myon hat sich auch an anderer Stelle verdächtig gemacht: Messungen seines so genannten magnetischen Moments passen nicht zu den theoretischen Berechnungen.

Im besten Fall stoßen die Wissenschaftler in den kommenden Jahren sogar auf eine Antwort, die beide Rätsel auf einen Schlag löst.  (Quelle: Spektrum der Wissenschaft, April 2014)

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit