Auf der Suche nach kohärenter Neutrino-Streuung: Erste Resultate des CONUS-Projekts

Auf der Suche nach kohärenter Neutrino-Streuung: Erste Resultate des CONUS-Projekts



Teilen: 

03.11.2020 12:00

Auf der Suche nach kohärenter Neutrino-Streuung: Erste Resultate des CONUS-Projekts

Mit dem CONUS-Neutrinodetektor wurde am Kernkraftwerk Brokdorf erstmals eine Obergrenze für vollständig kohärente Streuung von Neutrinos an Atomkernen bestimmt. CONUS ist ein Gemeinschaftsprojekt von Forschern des Heidelberger Max-Planck-Instituts für Kernphysik mit Physikern der PreussenElektra GmbH. Die Resultate liefern wertvolle Informationen für die Grundlagen der Teilchenphysik und die Suche nach Dunkler Materie. Kohärente Neutrinostreuung bildet die Grundlage einer neuen Detektorgeneration im Kilogramm- statt Tonnenmaßstab. Dies kann dem Nachweis von Supernova-Neutrinos oder der Überwachung kerntechnischer Anlagen dienen.

Beim Stichwort „Neutrinoexperimente“ denkt der Experte unweigerlich an gigantische Detektorsysteme mit vielen Tonnen Material, die notwendig sind, um diese nur äußerst schwach wechselwirkenden und daher extrem durchdringenden Elementarteilchen nachzuweisen. Zur Erforschung kosmischer Neutrinos werden gar ein Kubikkilometer arktisches Inlandeis (IceCube) oder das Wasser der Tiefsee (ANTARES) genutzt, was 1 Milliarde Tonnen entspricht.

Grundsätzlich wechselwirken Neutrinos auf zwei Weisen mit Materie: Entweder mit Elektronen in der Atomhülle oder mit dem aus Protonen und Neutronen bestehenden Atomkern. Letzterer bietet die Möglichkeit, dass ein Neutrino „kohärent“ mit dem Kern als Ganzes wechselwirkt, was die Wahrscheinlichkeit eines solchen Streuprozesses ganz erheblich erhöht. Anschaulich kann man dies mit einem Kegelspiel vergleichen: Ein einzelner Treffer wirft alle Neune um! Im Falle kohärenter Streuung wächst die Wahrscheinlichkeit für einen Treffer mit dem Quadrat der Anzahl der Neutronen im Atomkern. Für das Element Germanium ergibt sich aufgrund der hohen Anzahl Neutronen im Kern beispielsweise rechnerisch ein Faktor von etwa 1600! Im Prinzip kann dadurch im Vergleich zu anderen Neutrino-Wechselwirkungen eine Steigerung bei der kohärenten Wechselwirkung um bis zu drei Größenordnungen erwartet werden. Allerdings hat dieser Mechanismus auch einen Nachteil: Für kohärente Streuung darf die Energie des Neutrinos nicht zu hoch sein – im Bild der Materiewelle bedarf es einer Wellenlänge des Neutrinos von mindestens der Größenordnung eines Atomkerns (10⁻¹⁵ m). Das Neutrino überträgt bei der Streuung dann auch nur sehr wenig Rückstoßenergie auf den vergleichsweise schweren und somit trägen Atomkern, als würde man mit Sandkörnern auf einen LKW schießen. Dementsprechend niedrig muss die Energieschwelle des Nachweissystems sein. Dafür werden jedoch Neutrinodetektoren im Kilogramm- statt Tonnen-Maßstab möglich!

Die enormen Anforderungen für ein solches Experiment machten einen experimentellen Nachweis der theoretischen Vorhersagen aus den 1970er Jahren für mehr als 40 Jahre unmöglich. 2017 wurde die kohärente Streuung von Neutrinos an Kernen erstmals im COHERENT-Experiment nachgewiesen. Genauere Messungen, unter anderem mit niederenergetischen Reaktorneutrinos stehen jedoch noch aus. Wissenschaftler des Heidelberger Max-Planck-Instituts für Kernphysik (MPIK) haben sich mit dem Projekt CONUS (COherent Neutrino nUcleus Scattering) in Zusammenarbeit mit dem Kernkraftwerk Brokdorf dieser Herausforderung gestellt. Ein Kernkraftwerk bietet nämlich ideale Voraussetzungen für ein Experiment zum Nachweis und Charakterisierung der kohärenten Streuung von Neutrinos an Kernen. Der Reaktor ist eine sehr starke, kontrollierte Neutrinoquelle, und je näher an der Quelle man den Detektor aufbauen kann, desto intensiver ist der Fluss.

Mit dem Kernkraftwerk Brokdorf des Betreibers PreussenElektra GmbH hat das MPIK einen Partner gefunden, der die Forschungsarbeiten des Instituts aktiv unterstützt und einen Aufbau des Detektors in nur 17 Meter Entfernung vom Reaktor möglich gemacht hat (siehe Abb. 1). So steht ein extrem hoher Fluss von 23 Billionen Antineutrinos pro Sekunde und Quadratzentimeter aus einem der weltweit stärksten Reaktoren für Messungen zur Verfügung, ohne den Reaktor in irgendeiner Weise zu beeinflussen. Die Kombination mit der speziellen Abschirmung und den optimierten Detektoren macht das Experiment zu einem führenden Projekt auf diesem Gebiet.

Um störende Einflüsse, sog. Untergrundereignisse, die von kosmischer Strahlung und natürlicher Radioaktivität herrühren, zu minimieren, verwendet das CONUS-Experiment hochreine Halbleiterdetektoren aus Germanium, die von einer Abschirmung aus mehreren Schichten von höchstreinem Blei und mit Bor beladenem Polyethylen umgeben sind (siehe Abb. 2). Zusätzlich ist der Aufbauort am Reaktor durch Beton und Wasser gegen kosmische Strahlung abgeschirmt (siehe Abb. 1). Der restliche Anteil dieser Störstrahlung wird mit einem Veto-System in Echtzeit detektiert und verworfen. Ein kohärent streuendes Neutrino erzeugt im Germaniumdetektor eine kleine Ionisation die durch ein angelegtes elektrisches Feld abgesaugt und von der Detektorelektronik verstärkt und aufgezeichnet wird. Auf Grund der sehr kleinen Rückstoßenergien wurde dazu die Nachweisschwelle der Germaniumdetektoren zu Rekordwerten abgesenkt. Das Design der Abschirmung und des gesamten Detektorsystems basiert auf der langjährigen Erfahrung des MPIK, das weltweit führend auf diesem Gebiet ist.

Nach insgesamt knapp 70 Tagen effektiver Messzeit mit 3.73 kg aktivem Detektormaterial liegen nun die ersten Ergebnisse vor. Um den Untergrund zu bestimmen und genau zu analysieren wurden 16 Tage ohne Reaktorbetrieb genutzt. Zwar zeigte sich bisher noch kein Signal der gesuchten kohärenten Neutrinostreuung, es konnte aber die genaueste Obergrenze für die Wahrscheinlichkeit dieses Streuprozesses bestimmt werden, bei dem Neutrinos mit einer kinetischen Energie von 10 Millionen Elektronenvolt Rückstöße von 1000 Elektronvolt oder weniger erzeugen. 1 Elektronenvolt entspricht dabei der Energie eines Photons des sichtbaren Lichts. Mit einer extrem niedrigen Nachweisschwelle von ca. 300 eV sind die CONUS Detektoren dafür bestens geeignet.

Diese Obergrenze ist eine wertvolle Information für die Neutrino-Grundlagenforschung. An erster Stelle werden damit bisherige Vorhersagen für die Stärke der kohärenten Neutrinostreuung selbst getestet. Aber auch in der Kosmologie ist diese bei der Suche nach Dunkler Materie von großer Bedeutung: Mit zunehmender Empfindlichkeit werden Detektorsysteme für Dunkle Materie auch kohärente Streuung von Neutrinos aus natürlichen Quellen (z. B. Sonne) nachweisen, die dann einen störenden Untergrund darstellt, der sich nicht abstellen lässt. Die neue Obergrenze lässt bessere Voraussagen zu, wann dieser „neutrino floor“ erreicht wird, für den bisher nur Berechnungen vorliegen.

Kleine Neutrinodetektoren auf der Basis kohärenter Streuung würden auch eine neue Ära der Neutrinoastronomie eröffnen. Eine hochinteressante Neutrinoquelle sind Supernovae, jene gigantischen Explosionen am Ende der Entwicklung sehr massereicher Sterne. Einer sog. Kernkollaps-Supernova geht die Bildung eines Eisenkerns im Zentrum voraus, in welchem weitere Fusionsprozesse keine Energie mehr freisetzen. Der Kern bricht schließlich unter seiner eigenen Masse zusammen und wandelt sich in einen Neutronenstern oder gar in ein Schwarzes Loch um. Die freigesetzte Gravitationsenergie wird zu 99% in Form von Neutrinos abgestrahlt! Dies geschieht bereits einige Stunden, bevor die Supernova optisch sichtbar wird. 1987 leuchtete in der unserer Galaxis benachbarten Großen Magellanschen Wolke eine Supernova auf – das bisher jüngste Ereignis in unserer näheren kosmischen Umgebung (siehe Anhang). Durch Analyse der damals betriebenen Neutrinoexperimente konnten auch die vorher schon freigesetzten Supernova-Neutrinos nachgewiesen werden. Hierfür erhielt Masatoshi Koshiba 2002 den Nobelpreis für Physik.

Der Kollaps bewirkt eine so ungeheure Dichte im Zentrum einer Supernova, dass selbst Neutrinos nicht mehr ungehindert entweichen können. Für die Modellierung dieser Prozesse spielt kohärente Neutrinostreuung eine zentrale Rolle. Zur Beobachtung einer Supernova wie 1987A wäre ein Detektor der 100 kg-Klasse ausreichend, hierbei käme die kohärente Streuung gleich zweifach zum Tragen: Bei der Entstehung und beim Nachweis. Solche Neutrinodetektoren sind daher ein potenzielles „Frühwarnsystem“ für die Beobachtung von Supernovae.

Eine weitere Eigenschaft kohärenter Neutrinostreuung an Atomkernen ist ihre „Flavour-Unabhängigkeit“. Es gibt drei Sorten („Flavour“) von Neutrinos: elektronisch, myonisch und tauonisch, die sich ineinander umwandeln können: so genannte Neutrinooszillationen (Nobelpreis im Jahr 2002). So werden z. B. in Experimenten, die nur elektronische Neutrinos sehen, nur ca. 30% der solaren Neutrinos nachgewiesen. Bei einem Nachweis durch kohärente Streuung würde dies keine Rolle spielen und die Ausbeute wäre entsprechend 3 Mal so hoch, was in Kombination mit Oszillationsexperimenten sehr hilfreich wäre.

Auch für friedliche kerntechnische Anwendungen sind kohärente Neutrinodetektoren von Interesse: Sie sind klein und mobil und können zur Überwachung eingesetzt werden: In einem laufenden Reaktor liefern sie Echtzeit-Informationen über die Reaktorleistung – thermische Verzögerungen treten hier nicht auf. Eine weitere mögliche Anwendung wäre die Kontrolle der Plutonium-Proliferation.

Mit zusätzlichen Daten und einer optimierten Unterdrückung von Untergrundereignissen wird die Empfindlichkeit des CONUS-Detektors nun weiter gesteigert. Weil das erwartete Signal nicht weit von den bisherigen Grenzen ist, besteht die realistische Möglichkeit, dass CONUS innerhalb der nächsten beiden Jahre weltweit erstmalig Reaktorneutrinos über den neuen Kanal der kohärenten Streuung an Atomkernen sehen wird. Ferner ist CONUS modular aufgebaut und kann daher ohne größere Änderung des Designs erweitert werden.


Wissenschaftliche Ansprechpartner:

Prof. Dr. Dr. h.c. Manfred Lindner
Tel.: +49 6221 516-800
E-Mail: manfred.lindner@mpi-hd.mpg.de

Dr. Werner Maneschg
Tel.: +49 6221 516-287
E-Mail: werner.maneschg@mpi-hd.mpg.de

Dr. Christian Buck
Tel.: +49 6221 516-829
E-Mail: christian.buck@mpi-hd.mpg.de

Dr. Roland Wink
Tel.: +49 4829 75-2415
E-Mail: Roland.Wink@preussenelektra.de


Originalpublikation:

First constraints on elastic neutrino nucleus scattering in the fully coherent regime from the CONUS experiment
H. Bonet, A. Bonhomme, C. Buck, K. Fülber, J. Hakenmüller, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, T. Rink, H. Strecker, R. Wink (CONUS Collaboration)
arXiv:2011.00210 (hep-ex)


Weitere Informationen:

https://www.mpi-hd.mpg.de/lin/research_conus.de CONUS-Experiment (Abteilung „Teilchen- und Astroteilchenphysik“ am MPIK)
https://www.mpi-hd.mpg.de/mpi/fileadmin/bilder/Infomaterial/Flyer/CONUS-de.pdf Faltblatt zu CONUS


Anhang

attachment icon Die Supernova 1987A (links) in der Großen Magellanschen Wolke und ihre Überreste (rechts).


Merkmale dieser Pressemitteilung:
Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler
Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch


Quelle: IDW