Quantensprung auf der Waage



Teilen: 

06.05.2020 17:46

Quantensprung auf der Waage

Ein neuer Zugang zur Quantenwelt: Wenn ein Atom beim Quantensprung eines Elektrons Energie aufnimmt oder abgibt, wird es schwerer oder leichter. Ursache ist Einsteins E = mc². Allerdings ist dieser Effekt bei einem einzelnen Atom ultraklein. Trotzdem gelang es nun einer internationalen Kooperation unter der Führung eines Teams um Klaus Blaum und Sergey Eliseev am Max-Planck-Institut für Kernphysik, diese winzige Massenveränderung einzelner Atome erstmals zu messen. Sie setzte dafür die ultrapräzise Atom-Waage Pentatrap am Institut in Heidelberg ein. Damit entdeckte die Kooperation in Rhenium einen bislang unbeobachteten Quantenzustand, der für zukünftige Atomuhren interessant sein könnte.

Es ist erstaunlich, aber wahr: Zieht man eine mechanische Uhr auf, wird sie schwerer, ebenso ein Smartphone beim Aufladen. Ursache ist die Äquivalenz von Energie (E) und Masse (m), die Einstein in die berühmteste Formel der Physik gefasst hat: E = mc² (c: Vakuumlichtgeschwindigkeit). Allerdings ist dieser Effekt so klein, dass er sich unserer Alltagserfahrung völlig entzieht. Keine uns zugängliche Waage könnte ihn erfassen.

In Heidelberg gibt es allerdings eine solche Waage, am Max-Planck-Institut für Kernphysik. Pentatrap eröffnet der Präzisionsphysik eine neue Welt. Sie kann die unglaublich winzige Massenänderung eines einzelnen Atoms messen, wenn darin ein Elektron über einen Quantensprung Energie aufnimmt oder abgibt. Solche Quantensprünge in den Elektronenhüllen der Atome gestalten unsere Welt, sei es in der lebenspendenden Fotosynthese und generell chemischen Reaktionen oder sei es in der Entstehung von Farbe und überhaupt in unserem Sehen.

Eine Ameise auf einem Elefanten

Rima Schüssler, heute Postdoktorandin am Max-Planck-Institut für Kernphysik, hat Pentatrap seit ihrer Masterarbeit 2014 mit aufgebaut. Sie ist Erstautorin einer Arbeit über eine unerwartete Entdeckung, die in einer Zusammenarbeit am Max-Planck-PTB-Riken-Centers gemacht wurde: In Rhenium gibt es einen bislang unentdeckten elektronischen Quantenzustand mit besonderen Eigenschaften. Für die unglaubliche Empfindlichkeit, mit der Pentatrap den Sprung eines Elektrons in diesen Quantenzustand über die Massenänderung eines Rheniumatoms entdecken konnte, hat Rima Schüssler einen griffigen Vergleich parat: „Durch Wiegen eines sechs Tonnen schweren Elefanten könnten wir feststellen, ob eine zehn Milligramm leichte Ameise auf ihm herumkrabbelt.“

Pentatrap besteht aus fünf sogenannten Penningfallen. Damit eine solche Falle ein Atom wiegen kann, muss es elektrisch geladen sein, also zu einem Ion werden. Dem Rhenium wurden dazu sogar 29 seiner 75 Elektronen weggenommen, weshalb es sehr stark geladen ist, was die Messgenauigkeit steigert. Die Falle fängt dieses hochgeladene Rheniumion in einer Kombination aus einem Magnetfeld und einem speziell geformten elektrischen Feld ein. Darin läuft es in einer Kreisbahn um, die komplex in sich verschraubt ist. Im Prinzip kann man sich das wie eine Kugel an einem Seil vorstellen, die man in der Luft rotieren lässt. Tut man dies mit immer gleicher Kraft, dann rotiert eine schwerere Kugel langsamer als eine leichtere.

Ein extrem langlebiger Quantenzustand in Rhenium

In Pentatrap liefen zwei Rhenium-Ionen abwechselnd in den übereinanderliegenden Fallen um. Ein Ion befand sich im energetisch niedrigsten Quantenzustand. Im zweiten Ion wurde bei seiner Erzeugung ein Elektron durch Zufuhr von Energie zufällig in einen höheren Zustand angeregt – gewissermaßen war es die aufgezogene Uhr. Durch die gespeicherte Energie wurde es minimal schwerer und lief damit langsamer um als das erste Ion. Pentatrap zählt die Anzahl der Umläufe pro Zeiteinheit präzise mit, und die Differenz der Umlaufzahlen ergab den Gewichtszuwachs.

Mit dieser Methode entdeckte das Team im Rhenium einen extrem langlebigen Quantenzustand. Er ist metastabil, das heißt, er zerfällt nach einer gewissen Lebensdauer. Diese liegt aber bei enormen 130 Tagen, haben Theoretiker des Instituts um Zoltán Harman und Christoph H. Keitel, der Universität Heidelberg und vom Laboratoire Kastler Brossel in Paris errechnet. Es zeigte sich auch, dass die Lage des Quantenzustands sehr gut mit Modellrechnungen mit modernsten quantenmechanischen Methoden übereinstimmt.

Mögliche Anwendung in zukünftigen Atomuhren

Solche angeregten elektronischen Zustände in hochgeladenen Ionen sind für Grundlagenforschung interessant, aber auch für eine mögliche Anwendung in zukünftigen Atomuhren, wie sie die Arbeitsgruppe um José Crespo López-Urrutia am Institut in Kooperation mit der Physikalisch-Technischen Bundesanstalt (PTB) erforscht. Für diese ist der metastabile Zustand in Rhenium aus mehreren Gründen attraktiv. Zum einen entspricht er wegen seiner Langlebigkeit einer scharfen Umlauffrequenz des Elektrons um den Atomkern. Zum andern kann das Elektron mit weichem Röntgenlicht zum Sprung in diesen Quantenzustand angeregt werden. Im Prinzip könnte eine solche Uhr schneller und damit noch genauer ticken als die derzeitige Generation optischer Atomuhren. Allerdings ist es nach Ansicht von Ekkehard Peik, der an der PTB den Bereich „Zeit und Frequenz“ leitet und an der Arbeit nicht beteiligt war, noch zu früh für Spekulationen, ob sich die Entdeckung für eine neue Generation von Atomuhren eignen könnte.

„Diese neue Methode zur Entdeckung langlebiger Quantenzustände ist aber spektakulär“, betont der Physiker. Er könnte sich vorstellen, dass mit solchen neuen Quantenzuständen arbeitende Atomuhren erst einmal ein neues Testfeld für die Grundlagenforschung bieten könnten. Weil den Rheniumionen viele sich gegenseitig abschirmende Elektronen fehlen, spüren die übriggebliebenen Elektronen das elektrische Feld des Atomkerns besonders stark. Folglich rasen sie mit so hohen Geschwindigkeiten um den Kern herum, dass ihre Bewegung mit Einsteins Spezieller Relativitätstheorie beschrieben werden muss. Mit der neuen Atomwaage ließe sich auch hochpräzise testen, ob die Spezielle Relativitätstheorie und die Quantentheorie hier so zusammenspielen, wie dies die Theorie bislang beschreibt.

Ganz allgemein bietet die neue Atomwaage einen neuen Zugang zum quantenhaften Innenleben größerer Atome. Da diese aus vielen Teilchen – Elektronen, Protonen und Neutronen – bestehen, lassen sie sich nicht exakt berechnen. Daher beruhen die Atommodelle der Theorie zwangsweise auf Vereinfachungen, und diese können nun extrem genau überprüft werden. Darüber hinaus gibt es auch schon die Idee, solche Atome als Sonden für die Suche nach unbekannten Teilchen zu benutzen, die sich allein über die extrem schwache Gravitationskraft bemerkbar machen. Diese Dunkle Materie ist eines der größten, ungelösten Rätsel der Physik.

Auf dem Weg zu neuer Physik

Ein wichtiger Schritt in Richtung der Erschließung neuer Physik mit atomphysikalischen Methoden wurde ebenfalls mit PENTATRAP erreicht [Phys. Rev. Lett. 124, 113001]. Hierbei führten die Heidelberger Forscher Massenmessungen an einer Kette von fünf Paaren von Xenon-Isotopen durch. Mittels hochauflösender Laserspektroskopie an ähnlichen Ketten anderer Elemente wie Calcium und Ytterbium kann über die geringfügigen Energiedifferenzen (Isotopieverschiebung), in die die Massenmessungen eingehen, auf einen linearen Zusammenhang geschlossen werden. Nichtlineare Abweichungen davon können jedoch ein Indiz für neue Physik sein (weitere fundamentale Wechselwirkungen, neue Teilchen, Dunkle Materie), die sich bei extrem genauer Beobachtung manifestiert – eine Alternative zu Hochenergieexperimenten. Auch hier ist die enge Kooperation mit der Theorie (Gruppe um Zoltan Harman am MPIK) zu betonen. Die direkte Messung der Bindungsenergie eines Elektrons in einem hochgeladenen Ion zeigte eine sehr gute Übereinstimmung mit relativistischen Atomstrukturrechnungen. Dies schafft die Grundlage u. a. für zukünftige hochpräzise Tests der Quantenelektrodynamik.

(RW/BF)

Bildunterschrift 1:
Eine sehr präzise Atomwaage: Pentatrap besteht aus fünf übereinander angeordneten sogenannten Penningfallen (gelbe Säule in der Mitte). In diesen baugleichen Fallen lassen sich Ionen im angeregten Quantenzustand und im Grundzustand im Vergleich messen. Um Fehler zu minimieren, werden die Ionen für Vergleichsmessungen auch zwischen verschiedenen Fallen hin und her geschoben.
Foto: MPI für Kernphysik

Bildunterschrift 2:
Messungen bei Temperaturen des Weltalls: Pentatrap befindet sich in einem großen supraleitenden Magneten. Das Innere des Gefäßes wird auf eine Temperatur nahe dem absoluten Nullpunkt gekühlt, um störende Wärmebewegungen der Atome einzufrieren. Da Personen im Raum unter anderem durch ihre Körpertemperatur bereits die Messungen beeinflussen würden, darf niemand während des Experimentierbetriebs das Labor betreten. Die Anlage wird dann ferngesteuert.
Foto: MPI für Kernphysik


Wissenschaftliche Ansprechpartner:

Dr. Rima Schüssler
Tel.: +49 6221 516-271
rima.schuessler@mpi-hd.mpg.de

Prof. Dr. Klaus Blaum
Tel.: +49 6221 516-851
klaus.blaum@mpi-hd.mpg.de

Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
D 69117 Heidelberg


Originalpublikation:

R. X. Schüssler et al.,
Detection of metastable electronic states by Penning trap mass spectrometry
Nature 581, 42–46 (2020), DOI: https://doi.org/10.1038/s41586-020-2221-0


Weitere Informationen:

https://doi.org/10.1103/PhysRevLett.124.113001 Mass-Difference Measurements on Heavy Nuclides with an eV/c² Accuracy in the PENTATRAP Spectrometer
https://www.mpi-hd.mpg.de/blaum/high-precision-ms/pentatrap.de.html PENTATRAP-Project at MPIK


Merkmale dieser Pressemitteilung:
Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler
Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch


Quelle: IDW