Chaperon-Komplex in Aktion sichtbar gemacht: Proteinfaltung im Zellinneren neu verstanden



Teilen: 

21.07.2025 15:45

Literature advertisement

Plötzlich gesund

Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‚Wissenschaft‘, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.

Hier geht es weiter …

Chaperon-Komplex in Aktion sichtbar gemacht: Proteinfaltung im Zellinneren neu verstanden

Wie Proteine in unseren Zellen ihre richtige Form finden, ist entscheidend für die Gesundheit. Fehler dabei können schwere Krankheiten verursachen. Forschende des Zentrums für Medizinische Biotechnologie (ZMB) der Universität Duisburg-Essen haben nun gemeinsam mit nationalen Partnern einen zentralen Mechanismus dieses Prozesses entschlüsselt. Im Mittelpunkt: der sogenannte BiP-GRP94-Chaperon-Komplex. Er spielt im endoplasmatischen Retikulum, dem Produktions- und Kontrollzentrum der Zelle, eine Schlüsselrolle bei der Proteinfaltung. Die Ergebnisse der Studie wurden nun in der Fachzeitschrift Nature Structural & Molecular Biology veröffentlicht.

„Unsere Studie zeigt erstmals auf struktureller Ebene, wie die beiden Chaperone BiP und GRP94 zusammenarbeiten. Wir konnten nachweisen, dass sich der Komplex bei seiner Arbeit schrittweise und koordiniert verändert.“ erklärt Prof. Dr. Doris Hellerschmied von der Universität Duisburg-Essen (UDE), Letztautorin der Arbeit und Leiterin der Studie. „Die flexible Struktur des BiP-GRP94-Komplexes ist vermutlich entscheidend dafür, dass er eine Vielzahl von verschiedenen Proteinen bei ihrem Faltungsprozess unterstützen kann.“

Die Forscher:innen nutzten modernste Methoden wie hochauflösende Elektronenmikroskopie und biochemische Analysen, um verschiedene, bislang unbekannte Konformationen des Chaperon-Komplexes sichtbar zu machen und deren Bedeutung für die Funktion zu entschlüsseln.

„Unsere Ergebnisse liefern wertvolle Einblicke in die molekulare Maschinerie der Zelle“, betont Dr. Simon Pöpsel (UDE), Ko-Leiter der Studie. „Langfristig könnten sie dazu beitragen, neue Therapieansätze gegen Krankheiten zu entwickeln, bei denen die Proteinfaltung gestört ist – etwa bei bestimmten neurodegenerativen Erkrankungen.“

Die Arbeit wurde im Rahmen des DFG-geförderten Sonderforschungsbereichs 1430 („Molekulare Mechanismen der Zellfunktion und zellulären Organisation“) durchgeführt und unterstreicht die Bedeutung der interdisziplinären Zusammenarbeit an der UDE und mit nationalen Partnern.


Wissenschaftliche Ansprechpartner:

Prof. Dr. Doris Hellerschmied, Fakultät für Biologie/ Zentrum für Medizinische Biotechnologie, Tel. 0201/18 3-3120, doris.hellerschmied@uni-due.de


Originalpublikation:

Joel Cyrille Brenner, Linda Zirden, Lana Buzuk, Yasser Almeida-Hernandez, Lea Radzuweit, Joao Diamantino, Farnusch Kaschani, Markus Kaiser, Elsa Sanchez-Garcia, Simon Poepsel, Doris Hellerschmied, Conformational plasticity of a BiP-GRP94 chaperone complex, Nature Structural & Molecular Biology (2025). https://www.nature.com/articles/s41594-025-01619-0


Bilder

3D-Modelle des BiP–GRP94-Komplexes

3D-Modelle des BiP–GRP94-Komplexes


Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Biologie, Medizin
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch


 

Quelle: IDW