Teilen:
28.03.2024 14:34
Eigenschaften von Kristall-Oberflächen automatisch vorhersagen
Mit einem neuen computergestützten Verfahren lassen sich die physikalischen Eigenschaften komplexer Kristalloberflächen automatisiert und allein aus grundlegenden physikalischen Gesetzmäßigkeiten zuverlässig berechnen. Forschende der Universität Oldenburg schreiben in der Fachzeitschrift npj computational materials, dass die von ihnen entwickelte Methode die Suche nach neuen Materialien für wichtige Technologien wie etwa Photovoltaik, Batterien oder Datenübertragung beschleunigen könnte.
Bei der Suche nach neuen Materialien für wichtige Technologien wie etwa Photovoltaik, Batterien oder Datenübertragung werden computergestützte Methoden immer wichtiger. Nun haben Prof. Dr. Caterina Cocchi und Holger-Dietrich Saßnick vom Institut für Physik der Universität Oldenburg ein Verfahren entwickelt, mit dem sich die physikalischen Eigenschaften komplexer Kristalloberflächen automatisiert und allein anhand grundlegender physikalischer Gesetzmäßigkeiten berechnen lassen. Dies ermögliche es, schneller passende Materialien für Anwendungen, etwa aus dem Energiebereich, zu finden, schreiben die Forschenden in der Fachzeitschrift npj computational materials. In Zukunft möchten sie ihr Verfahren zudem mit Künstlicher Intelligenz und den Möglichkeiten des maschinellen Lernens kombinieren, um den Prozess noch weiter zu beschleunigen.
Wie Saßnick und Cocchi berichten, haben sich ähnliche Verfahren bislang auf massive Festkörper konzentriert und nicht auf Oberflächen. „Alle Prozesse, die wichtig sind, um Energie umzuwandeln, zu produzieren oder zu speichern, spielen sich aber auf Oberflächen ab“, so Cocchi, die an der Universität Oldenburg die Arbeitsgruppe Theoretische Festkörperphysik leitet. Es sei allerdings wesentlich schwieriger, Materialeigenschaften von Oberflächen zu berechnen als von vollständigen Kristallen. Die Grenzflächen sind meist komplex aufgebaut, Ursache dafür können beispielsweise Defekte in der Kristallstruktur oder ein ungleichmäßiges Wachstum eines Kristalls sein.
Diese Komplexität stellt Forschende in den Materialwissenschaften vor Probleme: „Häufig lassen sich die Eigenschaften von Proben experimentell nicht eindeutig ermitteln“, sagt Cocchi. Das habe Saßnick und sie motiviert, ein automatisiertes Verfahren zu entwickeln, um die Charakteristika neuer Verbindungen mit hoher Qualität zu errechnen.
Das Ergebnis ihrer Arbeit ist Bestandteil eines Computerprogramms mit dem Namen „aim2dat“, das als Eingabe lediglich die chemische Zusammensetzung einer Verbindung benötigt. Die Kristallstruktur wird aus existierenden Datenbanken entnommen. Anschließend errechnet die Software zunächst, unter welchen Bedingungen die Oberfläche des Materials chemisch stabil ist. In einem zweiten Schritt ermittelt das Programm wichtige Eigenschaften, insbesondere, welche Energie nötig ist, um Elektronen in Leitungszustände anzuregen oder gar von der Oberfläche zu lösen. Diese Größe spielt etwa in Materialien, die Sonnenenergie in elektrischen Strom umwandeln sollen, eine wichtige Rolle. „In unsere Berechnungen fließen keine Vorannahmen ein, sondern wir nutzen allein die fundamentalen Gleichungen der Quantenmechanik, weshalb unsere Ergebnisse sehr zuverlässig sind“, erläutert Cocchi.
Die Anwendbarkeit des Verfahrens demonstrierten die beiden Forschenden am Beispiel des Halbleiters Cäsiumtellurid. Die Kristalle dieses Materials, das in Teilchenbeschleunigern als Elektronenquelle verwendet wird, können in vier unterschiedlichen Formen auftreten. „Die Zusammensetzung und Qualität von Proben des Materials sind in Experimenten nur schwer zu kontrollieren“, berichtet Saßnick. In ihren Berechnungen konnten die Oldenburger Forschenden jedoch wichtige physikalische Eigenschaften detailliert für die verschiedenen Konfigurationen der Cäsiumtellurid-Kristalle ermitteln.
Cocchi und Saßnick haben die Software in eine öffentlich verfügbare Programmbibliothek eingebettet, damit auch andere Forschende die Möglichkeit haben, das Verfahren zu nutzen und zu verbessern. „Unsere Methode hat großes Potenzial, um neue Materialien für verschiedenste Anwendungen im Energiebereich zu entdecken – insbesondere physikalisch und strukturell komplex aufgebaute Festkörper“, sagt Cocchi.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Caterina Cocchi, Tel.: 0441/798-3578, E-Mail: caterina.cocchi@uol.de
Originalpublikation:
Saßnick, HD., Cocchi, C. “Automated analysis of surface facets: the example of cesium telluride.” npj Computational Materials 10, 38 (2024). https://doi.org/10.1038/s41524-024-01224-7
Weitere Informationen:
https://uol.de/theoretische-festkoerperphysik
Bilder
Anhand von wenigen grundlegenden Informationen zur Kristallstruktur berechnet das Programm der Olden …
Abbildung: Universität Oldenburg
Merkmale dieser Pressemitteilung:
Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler, jedermann
Energie, Informationstechnik, Physik / Astronomie, Werkstoffwissenschaften
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch