Herzinfarktanalyse in 20 Sekunden: Schnellere Messergebnisse dank KI



Teilen: 

31.10.2024 13:49

Literature advertisement

Plötzlich gesund

Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‘Wissenschaft’, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.

Hier geht es weiter …

Herzinfarktanalyse in 20 Sekunden: Schnellere Messergebnisse dank KI

Um die Größe eines Herzinfarktes in Laborversuchen zu bestimmen, werten Forschende Bilder von betroffenen Schweineherzen bislang in ca. 90 Minuten. „von Hand“ aus. Der Einsatz von Künstlicher Intelligenz beschleunigt den Vorgang auf etwa 20 Sekunden. Die neue Methode hat ein Forschungsteam der Medizinischen Fakultät der Universität Duisburg-Essen und des Universitätsklinikums Essen entwickelt.

Für die Infarktforschung ist es wichtig zu wissen, wie groß ein Infarkt unter definierten Bedingungen ist und wieviel Herzgewebe dabei abgestorben ist. Eine präzise Bestimmung der Infarktgröße ist unerlässlich, um neue herzschützende, sog. kardioprotektive, Behandlungen zu entwickeln u. Dazu wird zunächst dem verstorbenen Schwein nach durchlebtem Herzinfarkt das Herz entnommen. Im Anschluss werden Herzschnitte angefertigt, digitale Bilder aufgenommen und schließlich von Hand ausgewertet. Ein Forschungsteam der Medizinischen Fakultät der Universität Duisburg-Essen um Prof. Petra Kleinbongard und Prof. Gerd Heusch hat in Zusammenarbeit mit Prof. Jakob Nikolas Kather von der TU Dresden nun eine schnelle und präzise KI-basierte Methode in „Basic Research in Cardiology“ veröffentlicht. Ihr automatisiertes Verfahren beschleunigt die Messung: von etwa 90 Minuten auf 20 Sekunden.

In dieser Studie wurden insgesamt 3869 digitale Bilder von TTC-gefärbten Herzschnitten aus Schweinen verwendet, um ein Deep-Learning-Modell zur Infarktgrößenbestimmung zu trainieren und etablieren. Die Forschenden haben die Bilder digital vorverarbeitet, indem sie störende Hintergründe entfernt und das Bildformat angepasst haben.

Zunächst wurde an einem Teil der digitalen Herzschnitt-Bilder die Künstliche Intelligenz angelernt. Als Referenz für die Künstliche Intelligenzwurden von Hand die Infarktbereiche, die nicht-betroffenen Bereiche und andere relevante Regionen auf den Herzschnitt-Bildern eingezeichnet. Durch den Einsatz eines speziell trainierten Deep-Learning-Modells auf Basis der U-Net-Architektur konnte die Auswertungszeit pro Experiment von 90 Minuten auf nur 20 Sekunden reduziert werden. „Die Ergebnisse, die das Modell uns in einem unabhängigen Datenset liefert, stimmen bis zu 98% mit unseren manuellen Messungen an Schweineherzen überein“, erklärt Prof. Petra Kleinbongard. Damit stellt die neue Methode eine objektive und zuverlässige Alternative zur herkömmlichen Infarktgrößenmessung dar, die auch in Forschungsverbünden eingesetzt werden kann. Die Technologie wurde bereits erfolgreich in verschiedenen Herzmodellen getestet und könnte die Forschung zur Kardioprotektion erheblich voranbringen.

Redaktion: Dr. Milena Hänisch, Dekanat der Medizinischen Fakultät, Tel. 0201/723-1615, milena.haenisch@uk-essen.de


Wissenschaftliche Ansprechpartner:

Prof. Dr. Petra Kleinbongard, Institut für Pathophysiologie, Westdeutsches Herz- und Gefäßzentrum, Tel. 0201 / 723-2763, petra.kleinbongard@uk-essen.de


Originalpublikation:

https://link.springer.com/article/10.1007/s00395-024-01081-x


Bilder


Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Informationstechnik, Medizin
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch


 

Quelle: IDW