Teilen:
16.12.2024 13:25
Plötzlich gesund
Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‘Wissenschaft’, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.
Täuschend echt: KI-generierte Histologiebilder
Selbst Experten können künstlich erzeugte Gewebeschnittbilder nicht zuverlässig identifizieren / Herausforderung für die Beurteilung biomedizinischer Forschung
Sie hilft bei der Beurteilung von Röntgen- und MRT-Bildern, beim Schreiben von Arztbriefen und bei der Auswertung von Messdaten in der Forschung – die künstliche Intelligenz, kurz KI, ist in der klinischen Praxis und in der biomedizinischen Forschung zu einem hilfreichen und mächtigen Instrument geworden. So mächtig, dass Hochschulen und Forschungsorganisationen Empfehlungen und Leitlinien zu ihrer Nutzung in der Wissenschaft formulieren.
Wie berechtigt das ist, untermauert das Experiment einer Arbeitsgruppe am Universitätsklinikum Jena: Das Forschungsteam nutzte den öffentlich verfügbaren Deep-Learning-Algorithmus Stable Diffusion, um aus Trainingsdaten neue histologische Bilder zu erstellen. „Wir verwendeten als Trainingsbilder einmal drei und einmal 15 echte Schnittbilder von angefärbtem Gewebe aus Mäusenieren“, so Studienleiter Prof. Ralf Mrowka. „Bereits auf der Basis von drei Originalbildern entstanden schon recht überzeugende Bilder.“
In einer Online-Umfrage testete das Forschungsteam, ob diese KI-generierten Histologiebilder von echten zu unterscheiden waren. Die über 800 Teilnehmenden der Umfrage wurden dafür in Experten oder Laien eingeteilt, je nachdem, ob sie Erfahrungen mit dem Beurteilen von histologischen Bildern hatten, wie etwa Medizinstudierende, oder nicht. Ihnen wurden nacheinander 16 einzelne Bilder – je acht echte und KI-generierte – gezeigt, jedes Bild sollte klassifiziert werden, bevor das nächste erschien.
Neue Methoden zur Erkennung gefälschter Daten in wissenschaftlichen Arbeiten notwendig
Die Expertengruppe ordnete gut zwei Drittel richtig ein. Der Laiengruppe gelang dies nur in gut der Hälfte der Fälle. Beide Gruppen konnten die auf weniger Trainingsdaten beruhenden KI-Bilder häufiger enttarnen. Zehn Teilnehmende der Expertengruppe erkannten alle Bilder korrekt. Über alle Bilder- und Teilnehmergruppen hinweg fielen die Entscheidungen zumeist innerhalb der ersten halben Minute. „Wir konnten auch feststellen, dass richtige Zuordnungen signifikant schneller getroffen wurden als falsche,“ stellt Erstautor Dr. Jan Hartung heraus, „eine Beobachtung, die mit gängigen Modellen der wahrnehmungsbasierten Entscheidungsfindung im Einklang steht“.
Ralf Mrowka: „Unser Experiment zeigt, dass die Erfahrung hilft, gefälschte Bilder zu erkennen; dass aber auch dann ein nicht geringer Anteil künstlicher Bilder nicht zuverlässig identifiziert wird.“ „Dabei sind die technischen Hürden für jemanden mit der Absicht, Abbildungen zu fälschen, relativ gering“, betont Jan Hartung. „Man braucht nicht hunderte von Beispielen zum Trainieren eines Algorithmus, ein Dutzend kann bereits ausreichend sein.“ Das Autorenteam sieht darin eine Herausforderung für die Wissenschaft, derer diese sich bewusst sein muss und die neuer Methoden zur Erkennung gefälschter Daten in wissenschaftlichen Arbeiten bedarf.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Ralf Mrowka
AG Experimentelle Nephrologie, Klinik für Innere Medizin III, Universitätsklinikum Jena
ThIMEDOP-Thüringer Innovationszentrum für Medizintechnik-Lösungen
Ralf.Mrowka@med.uni-jena.de
Originalpublikation:
Hartung, J., Reuter, S., Kulow, V.A. et al. Experts fail to reliably detect AI-generated histological data. Sci Rep 14, 28677 (2024). https://doi.org/10.1038/s41598-024-73913-8
Bilder
Experiment am Uniklinikum Jena belegt: Selbst Experten können künstlich erzeugte Gewebeschnittbilder …
Universitätsklinikum Jena
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Biologie, Ernährung / Gesundheit / Pflege, Informationstechnik, Medizin
überregional
Forschungsergebnisse
Deutsch