Die Gene hinter den Superkräften der Fledermäuse



Teilen: 

22.07.2020 17:00

Die Gene hinter den Superkräften der Fledermäuse

Forschende veröffentlichen die ersten sechs hochqualitativen Referenzgenome von Fledermäusen

Fledermäuse können fliegen und sich mit Hilfe von Echoortung mühelos in völliger Dunkelheit orientieren; sie überleben tödliche Krankheiten und sind erstaunlich widerstandsfähig gegenüber dem Altern und Krebs. Forschende haben nun erstmals das Erbgut von Fledermäusen nahezu vollständig entschlüsselt, das für die einzigartige Anpassung und die Superkräfte dieser Tiere verantwortlich ist.

Bat1K ist ein weltweites Konsortium von Wissenschaftlern und Wissenschaftlerinnen, das sich der Sequenzierung des Erbguts jeder einzelnen der 1421 lebenden Fledermausarten widmet. Nun haben diese Wissenschaftler sechs hochpräzise Fledermausgenome erstellt und analysiert. Diese sind zehnmal vollständiger als alle bisher veröffentlichten Fledermausgenome. Damit bilden sie die Grundlage, um die einzigartigen Eigenschaften von Fledermäusen zu erforschen.

„Wir können nun besser verstehen, wie Fledermäuse Viren tolerieren, das Altern verlangsamen und Flug und Echoortung entwickelt haben. Mit diesem Wissen über die genetischen Eigenschaften der Fledermäuse lassen sich möglicherweise künftig Alterungsprozesse und Krankheiten des Menschen lindern”, sagt Emma Teeling, Hauptautorin vom University College Dublin und Mitbegründerin von Bat1K.

Die Forschenden haben Fledermausgenome wurden mit Hilfe neuester Technologien des DRESDEN-concept Genome Center (DGC) entschlüsselt. Das DGC ist eine gemeinschaftlich genutzte hochmoderne Technologieplattform in Dresden. Das Team konnte so die DNA der Fledermaus sequenzieren und neue Methoden entwickeln, um dann die einzelnen Teile in der richtigen Reihenfolge zusammenzusetzen und die vorhandenen Gene zu bestimmen.

„Mit den modernsten DNA-Sequenzierungstechnologien und neuen Computermethoden für derartige Daten haben wir 96 bis 99 Prozent jedes Fledermausgenoms auf Chromosomenebene rekonstruiert und das in einer noch nie dagewesenen Qualität. Diese ist beispielsweise mit der aktuellen Qualität des menschlichen Genoms vergleichbar – das Ergebnis von mehr als einem Jahrzehnt intensiver Bemühungen. Daher bieten diese Fledermausgenome eine hervorragende Grundlage für Experimente und evolutionäre Studien der faszinierenden Fähigkeiten und physiologischen Eigenschaften dieser Tiere“, so Eugene Myers, Hauptautor und Direktor am Max-Planck-Institut für molekulare Zellbiologie und Genetik und am Zentrum für Systembiologie, Dresden, Deutschland.

Verwandtschaft der Fledermäuse

Das Team hat diese Fledermausgenome mit 42 anderen Säugetieren verglichen, um die noch strittige Frage zu beantworten, wo Fledermäuse im Stammbaum der Säugetiere angesiedelt sind. Mit Hilfe neuartiger Methoden und mit umfassenden molekularen Datensätzen fand das Team heraus, dass Fledermäuse am engsten mit einer Gruppe namens Ferungulata verwandt sind. Dazu zählen Fleischfresser (zum Beispiel Hunde, Katzen und Robben), Schuppentiere, Wale und Huftiere (Hufsäuger).

Um die genomischen Veränderungen aufzuspüren, die zu den einzigartigen Anpassungen von Fledermäusen geführt haben, hat das Team systematisch nach genetischen Unterschieden zwischen Fledermäusen und anderen Säugetieren gesucht. Dabei fanden die Forscher Regionen im Genom, die sich bei Fledermäusen anders entwickelt haben. So gingen Gene im Laufe der Evolution verloren oder es kamen neue hinzu, die die einzigartigen Eigenschaften von Fledermäusen beeinflusst haben könnten.

„Unsere Genom-weiten Suchen haben Veränderungen in den Genen des Gehörs gefunden. Diese Änderungen könnten zur Echoortung beitragen. Darüber hinaus haben wir Duplikationen von antiviralen Genen, Änderungen in Genen des Immunsystems und den Verlust von Genen entdeckt, die Entzündungen fördern. Diese Veränderungen könnten zu der außergewöhnlichen Immunität von Fledermäusen und zu deren Toleranz gegenüber Coronaviren beitragen”, erklärt Michael Hiller, Hauptautor und Forschungsgruppenleiter am Max-Planck-Institut für molekulare Zellbiologie und Genetik in Dresden, am Max-Planck-Institut für Physik komplexer Systeme, und am Zentrum für Systembiologie Dresden.

Hohe Virustoleranz

Das Team fand auch Hinweise darauf, dass sich die Fähigkeit der Fledermäuse, Viren zu tolerieren, in ihren Genomen widerspiegelt. Die hochqualitativen Genome enthielten „fossile Virensequenzen“ von einer großen Vielfalt an Viren. Dies zeigt, dass Fledermäuse schon in der Vergangenheit Virusinfektionen überlebt haben.

Die hohe Qualität der Fledermausgenome hat es dem Team erlaubt, mehrere regulatorische Regionen im Genom eindeutig zu identifizieren und experimentell zu bestätigen. Diese Regionen haben möglicherweise die wichtigsten evolutionären Entwicklungen von Fledermäusen beeinflusst.

„Mit derart vollständigen Genomen waren wir in der Lage, regulatorische Regionen zu identifizieren, die die Aktivität von den Genen kontrollieren, die für Fledermäuse einzigartig sind. Insbesondere konnten wir spezifische Fledermaus-Mikro-RNAs im Labor überprüfen, um ihre Auswirkungen auf die Genregulation zu zeigen. In der Zukunft könnten wir diese Genome dazu nutzen, um zu verstehen, wie die regulatorischen Regionen und die Epigenomik zu den außergewöhnlichen Anpassungen beigetragen haben”, so Sonja Vernes, Hauptautorin und mitbegründende Direktorin von Bat 1K, Max-Planck-Institut für Psycholinguistik, Nijmegen, Niederlande.

Dies ist aber nur der Anfang. Die verbleibenden rund 1400 lebenden Fledermausarten weisen eine unglaubliche Vielfalt in Bezug auf Ökologie, Langlebigkeit, Sinneswahrnehmung und Immunologie auf. Hinsichtlich der genetischen Grundlage dieser spektakulären Eigenschaften sind noch zahlreiche Fragen offen. Bat1K wird helfen diese Fragen beantworten, da immer mehr hochqualitative Fledermausgenome generiert werden und damit die genetische Grundlage der wunderbaren Superkräfte von Fledermäusen weiter erforscht werden kann.


Wissenschaftliche Ansprechpartner:

Prof. Dr. Eugene Myers
Direktor Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden
+49 351 210-2440
myers@mpi-cbg.de

Dr. Michael Hiller
Forschungsgruppenleiter Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden
+49 351 210-2781
hiller@mpi-cbg.de

Dr. Sonja Vernes
Forschungsgruppenleiterin Max-Planck-Institut für Psycholinguistik, Nijmegen, Niederlande
sonja.vernes@mpi.nl


Originalpublikation:

David Jebb, Zixia Huang, Martin Pippel, Graham M. Hughes, Ksenia Lavrichenko,Paolo Devanna, Sylke Winkler, Lars S. Jermiin, Emilia C. Skirmuntt, Aris Katzourakis,Lucy Burkitt-Gray, David A. Ray, Kevin A. M. Sullivan, Juliana G. Roscito,Bogdan M. Kirilenko, Liliana M. Dávalos, Angelique P. Corthals, Megan L. Power,Gareth Jones, Roger D. Ransome, Dina K. N. Dechmann, Andrea G. Locatelli,Sébastien J. Puechmaille, Olivier Fedrigo, Erich D. Jarvis, Michael Hiller,Sonja C. Vernes, Eugene W. Myers & Emma C. Teeling
Six reference-quality genomes reveal evolution of bat adaptations
Nature, 22 June 2020


Weitere Informationen:

http://www.mpg.de/15168957 Pressemeldung der Max-Planck-Gesellschaft


Merkmale dieser Pressemitteilung:
Journalisten, Lehrer/Schüler, Wissenschaftler, jedermann
Biologie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch


Quelle: IDW