Teilen:
18.09.2024 14:01
Nanotechnologie: DNA-Origami mit Frachtfunktion
LMU-Chemiker präsentieren zwei Studien, die biotechnologischen Anwendungen neue Möglichkeiten eröffnen.
In der Nanotechnologie wird die Entwicklung dynamischer Systeme, die auf molekulare Signale reagieren, immer wichtiger. Die DNA-Origami-Technik, bei der DNA so programmiert wird, dass funktionale Nanostrukturen entstehen, spielt dabei eine zentrale Rolle. Teams um den LMU-Chemiker Philip Tinnefeld haben nun zwei Studien veröffentlicht, wie mithilfe von DNA-Origami und fluoreszierenden Sonden gezielt molekulare Fracht freigesetzt werden kann.
Im Fachmagazin Angewandte Chemie berichten die Forschenden über einen neuartigen DNA-Origami-basierten Sensor, der Lipidvesikel erkennen und gezielt mit molekularer Fracht beliefern kann. Der Sensor funktioniert mit Hilfe des sogenannten single-molecule Fluorescence Resonance Energy Transfer (smFRET). Dabei wird der Abstand zwischen zwei fluoreszierenden Molekülen gemessen. Das System besteht aus einem DNA-Origami-Gerüst, aus dem eine DNA herausragt, die an ihrem Ende mit Fluoreszenzfarbstoff markiert ist. Kommt die DNA in Kontakt mit Vesikeln, verändert sich ihre Konformation und damit auch das Fluoreszenzsignal, weil sich der Abstand der Fluoreszenzmarkierung zu einem zweiten fluoreszierenden Molekül auf dem Origami-Gerüst ändert. Auf diese Weise können Vesikel detektiert werden.
Sensor wird zielgenau übertragen
In einem zweiten Schritt kann das System auch als Transportmittel für Moleküle genutzt werden, bei der der Sensorstrang als molekulare Fracht dient, die auf das Vesikel übertragen werden kann. Durch eine weitere Modifikation des Systems konnten die Forschenden zudem die Übergabe der Fracht zielgenau kontrollieren.
Lipidvesikel haben eine Schlüsselfunktion bei vielen zellulären Prozessen, beispielsweise dem Transport von Molekülen und der Signalübertragung. Deshalb ist die Möglichkeit, sie zu erkennen und zu manipulieren, für biotechnologische Anwendungen wie etwa die Entwicklung gezielter Therapien besonders interessant. Der hier gezeigte Ansatz könnte etwa einen Weg aufzeigen, Lipid-Nanopartikel zum Beispiel für Impfstoffe mit einer genau definierten Molekülzahl zu beladen. „Auch in der biologischen Forschung bietet unser System vielversprechende Ansätze, um zelluläre Prozesse auf molekularer Ebene besser zu verstehen und zu steuern“, sagt Tinnefeld.
Steuerbare Konformationsänderungen
In der zweiten, kürzlich im Fachmagazin Nature Communications veröffentlichten, Studie stellt ein zweites Team um Tinnefeld und Yonggang Ke (Emory University, USA) eine DNA-Origami-Struktur vor, die eine schrittweise allosterische Konformationsänderung durchläuft, wenn bestimmte DNA-Stränge binden. Durch den Einsatz von FRET-Sonden konnten sie diesen Prozess auf molekularer Ebene verfolgen und zeigen, wie sich die Reaktionsschritte zeitlich steuern lassen. Zudem demonstrieren die Forschenden, wie eine DNA-Fracht während dieses Prozesses gezielt freigesetzt werden kann, was neue Möglichkeiten für kontrollierte Reaktionskaskaden eröffnet.
Wissenschaftliche Ansprechpartner:
Prof. Philip Tinnefeld
Faculty of Chemistry and Pharmacy
Chair Physical Chemistry
Phone: +49 89 2180 77549
philip.tinnefeld@cup.uni-muenchen.de
https://tinnefeld.cup.uni-muenchen.de/
Originalpublikation:
E. Büber et al.: DNA Origami Vesicle Sensors with Triggered Single-Molecule Cargo Transfer. Angewandte Chemie 2024
https://doi.org/10.1002/anie.202408295
F. Cole et al.: Controlled mechanochemical coupling of anti-junctions in DNA origami arrays. Nature Communications 2024
https://doi.org/10.1038/s41467-024-51721-y
Bilder
Merkmale dieser Pressemitteilung:
Journalisten
Biologie, Chemie, Physik / Astronomie
überregional
Forschungsergebnisse
Deutsch