1000 Mal präziser: Team der TU Darmstadt testet neuen Weg zur Bestimmung von Kohlenstoff-Ladungsradien



Teilen: 

14.12.2023 09:32

1000 Mal präziser: Team der TU Darmstadt testet neuen Weg zur Bestimmung von Kohlenstoff-Ladungsradien

Mit hochpräzisen laserspektroskopische Messungen lassen sich die Ladungsradien von Atomkernen direkt messen. Daraus ergeben sich Einblicke in die Verteilung der Teilchen im Atomkern und deren gegenseitige Wechselwirkung. Bislang wurden solche Messungen an Systemen mit nur einem Elektron durchgeführt. Eine neue Ionenquelle am Institut für Kernphysik der TU Darmstadt hat ermöglicht, hochpräzise Laserspektroskopie an Kohlenstoffionen durchzuführen, die zwei Elektronen enthalten. Frühere Messungen konnten um den Faktor 1.000 verbessert werden. Die Ergebnisse wurden in der Zeitschrift „Physical Review Letters“ veröffentlicht und weisen den Weg zu einer direkten Bestimmung der Kernladungsradien.

In der Physik werden vier Grundkräfte unterschieden, mit denen sich alle bekannten physikalischen Prozesse beschreiben lassen: Gravitation, elektromagnetische Kraft, Schwache Wechselwirkung und Starke Wechselwirkung (Kernkraft).
Um die elektromagnetische Kraft und die Kernkraft zu untersuchen, bieten sich Atome und Ionen leichter Elemente an, denn diese haben nur wenige Teilchen in der Atomhülle (Elektronen) und im Kern (Protonen und Neutronen beziehungsweise als Sammelbegriff Nukleonen). Nur für solche Systeme mit wenigen Teilchen lassen sich Berechnungen ohne weitere Vereinfachungen oder Modellannahmen durchführen („ab initio“).
Bei den Berechnungen werden für die Atomhülle und den Kern unterschiedliche Theorien zugrunde gelegt: die Quantenelektrodynamik (QED) für die Hülle und die Quantenchromodynamik (QCD) beziehungsweise darauf aufbauende effektive Feldtheorien für den Kern. Beide Theorien lassen sich durch die Berücksichtigung weiterer, immer komplexer aber auch beitragsmäßig kleiner werdender Terme, verbessern. Dabei konkurrieren Experiment und Theorie immer wieder in der erzielten Genauigkeit und fördern und fordern damit den Fortgang im jeweils anderen Gebiet.
Hochpräzise laserspektroskopische Messungen sind dabei in der Regel so genau, dass Details der Kernstruktur messbaren Einfluss auf die Bindungsenergien der eigentlich weit entfernten Elektronen und somit auf die Spektrallinien haben, die den Fingerabdruck eines Elementes darstellen. Um daraus die Kerneigenschaften zu extrahieren, benötigt man theoretisch berechnete Parameter. Die dafür notwendigen Berechnungen sind für Systeme mit nur einem Elektron am genauesten, die man in Anlehnung an das neutrale Wasserstoffatom – in dessen Atomhülle auch nur ein Elektron vorkommt – als wasserstoffartig bezeichnet.
In diesen Systemen ist es möglich, anhand der Messung der Frequenz einer geeigneten Spektrallinie den Ladungsradius, also die „Ausdehnung der Protonenverteilung“, des Kerns direkt zu bestimmen. Allerdings gibt es nur wenige für Laser geeignete Spektrallinien in wasserstoffartigen Systemen, so dass bislang nur die Radien der vier leichtesten stabilen Atomkerne auf diese Weise gemessen werden konnten. In den letzten Jahren gab es enorme Fortschritte bei den atomaren Berechnungen, so dass es inzwischen möglich erscheint, in Zukunft auch die Kernladungsradien direkt aus der Spektroskopie an Atomen und Ionen mit zwei Elektronen zu bestimmen (heliumartig genannt, da das Heliumatom zwei Elektronen aufweist).

Eine Arbeitsgruppe im Institut für Kernphysik (IKP) an der TU Darmstadt hat nun entsprechende Spektrallinien in heliumartigen Kohlenstoffionen vermessen. Neutrale Kohlenstoffatome besitzen sechs Elektronen, von denen man vier entfernen muss, um ein heliumartiges System zu erhalten. Um diese C4+-Ionen zu erzeugen, implementierte Phillip Imgram im Rahmen seiner jüngst abgeschlossenen Doktorarbeit eine Elektronenstrahl-Ionenquelle an der KOALA-Apparatur (kollineare Apparatur für Laserspektroskopie und angewandte Physik). „Durch die sorgfältige Optimierung der Quellenparameter und des daraus extrahierten Ionenstrahls ließen sich ideale Bedingungen für die laserspektroskopischen Messungen erreichen und damit die Genauigkeit des früher bereits vermessenen Übergangs um den Faktor 1000 verbessern“, erklärt Imgram. Seine Ergebnisse sind jetzt in der Zeitschrift „Physical Review Letters“ und parallel dazu mit ausführlicheren Informationen bei „Physical Review A“ erschienen.
In Kombination mit den atomaren Berechnungen, in denen Beiträge aus der Quantenelektrodynamik enthalten sind, konnte hieraus der Kernladungsradius von Kohlenstoff bestimmt werden. Bemerkenswert ist, dass bei dieser Methode keine Modellannahmen zum Atomkern einfließen, sondern nur auf die gut verstandene Wechselwirkung zwischen Kern und Elektronen zurückgegriffen wird.
Das Ergebnis der Messungen stimmte mit den Ergebnissen aus anderen Messmethoden innerhalb der von den Theoretikern prognostizierten Unsicherheit überein. Die aus der Atomtheorie noch resultierende Unsicherheit übersteigt die des Experimentes um mehr als das Hundertfache und stammt von komplexen Termen höherer Ordnungen, die noch nicht berücksichtigt werden konnten. Das experimentelle Ergebnis kann nun von den Theoretikern genutzt werden, um die wichtigsten Beiträge der nächsthöheren Ordnung abzuschätzen und damit die Unsicherheit in der Theorie insgesamt zu reduzieren. Gelingt es, diese auf das experimentelle Niveau zu senken, kann die Genauigkeit des Ladungsradius‘ des untersuchten Kohlenstoffisotops anhand der jetzt vorliegenden experimentellen Ergebnisse noch einmal verbessert werden. An KOALA will man als nächstes auch die heliumartigen Ionen der leichteren Elemente untersuchen, für die die Kernradien noch nicht so präzise bekannt sind.

MI-Nr. 48/2023, Nörtershäuser/cst


Wissenschaftliche Ansprechpartner:

Professor Wilfried Nörtershäuser
Technische Universität Darmstadt
Institut für Kernphysik
Experimentelle Atom- und Kernphysik radioaktiver Nuklide
Tel: +49/(0)6151-16-23575
E-Mail: wnoertershaeuser@ikp.tu-darmstadt.de


Originalpublikation:

P. Imgram, K. König, B. Maaß, P. Müller, and W. Nörtershäuser (2023): “Collinear Laser Spectroscopy of 23S1→23PJ Transitions in Helium-like 12C4+” In Physical Review Letters 131, 243001 (2023)
https://doi.org/10.1103/PhysRevLett.131.243001


Bilder


Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch


 

Quelle: IDW