Bitter macht den Magen sauer, aber wie? / Wie bittere Nahrungsbestandteile die Magensäureproduktion beeinflussen



Teilen: 

14.05.2024 09:39

Literature advertisement

Plötzlich gesund

Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‘Wissenschaft’, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.

Hier geht es weiter …

Bitter macht den Magen sauer, aber wie? / Wie bittere Nahrungsbestandteile die Magensäureproduktion beeinflussen

Im Magen sind sogenannte Parietalzellen für die Säureproduktion verantwortlich. Sie reagieren nicht nur auf körpereigene Botenstoffe, sondern auch auf bitter schmeckende Nahrungsbestandteile wie Koffein. Ein Forschungsteam des Leibniz-Instituts für Lebensmittel-Systembiologie an der Technischen Universität München hat nun eine Studie an einer menschlichen Magenzelllinie durchgeführt. Deren Ergebnisse tragen dazu bei, die molekularen Regulationsmechanismen aufzuklären, über die Bitterstoffe die Magensäureproduktion beeinflussen.

Es ist bekannt, dass sich Geschmacksrezeptoren für Bitteres nicht nur auf der Zunge, sondern auch auf der Oberfläche anderer Gewebe und Zellen finden. Dazu gehören auch die Parietalzellen des Magens, die Protonen ins Mageninnere absondern − also Magensäure produzieren. Neuere Studien hatten bereits gezeigt, dass die in Parietalzellen nachgewiesenen Bitterrezeptoren an der Regulation der Magensäurefreisetzung beteiligt sind. Über welche molekularen Signalwege dies erfolgt, ist jedoch noch nicht vollständig verstanden.

Magenzellen als Testsystem

Um mehr über das molekulare Zusammenspiel von Bitterstoffen, Bitterrezeptoren und Magensäureproduktion zu erfahren, hat ein Forschungsteam um Veronika Somoza, Direktorin des Freisinger Leibniz-Instituts, eine Studie an einem zellulären Testsystem durchgeführt. Bei diesem handelt sich um menschliche parietale HGT-1-Zellen, die in der Lage sind, Protonen zu sekretieren und wie Geschmackszellen über Bitterrezeptoren verfügen.

Das Team um Veronika Somoza stellte zunächst eine Arbeitshypothese auf, die auf den Ergebnissen früherer Studien basiert und sich an den Erkenntnissen über die Signalweiterleitungswege in Geschmackszellen orientiert. Demnach stimulieren bittere Lebensmittelinhaltsstoffe Bitterrezeptoren, die in der Zellmembran eingebettet sind. Hierdurch werden innerhalb der Zellen Calciumionen frei, die zur Öffnung von Ionenkanälen führen. Dies wiederum lässt Natriumionen von außen in die Magenzellen einströmen, was schließlich zur Protonenfreisetzung beiträgt.

Hypothese bestätigt

Erstautor Phil Richter erklärt: „Wir haben diesen Mechanismus erfolgreich mit den beiden Bitterstoffen Koffein und L-Arginin getestet. Wie aufgrund früherer Studienergebnisse zu erwarten war, stimulierten beide Lebensmittelinhaltsstoffe in unserem Testsystem nachweislich die Protonensekretion der Magenzellen.“ Der Doktorand fügt hinzu: „Neu ist, dass wir jetzt erstmals nachweisen konnten, dass die Transient-Receptor-Potential-Kanäle M4 und M5 nicht nur in Geschmacks-, sondern auch in Magenzellen an der Signalkaskade beteiligt sind und für einen Einstrom von Natriumionen in die Zellen sorgen.“

Senior Scientist Gaby Andersen ergänzt: „Durch den Einsatz von Knock-out-Versuchen, bei denen wir gezielt einen Bitterrezeptortyp in den Testzellen ausschalteten, konnten wir zudem erstmals zeigen, dass es eine Verbindung zwischen Bitterrezeptoren und der Aktivierung der Ionenkanäle gibt.“ Die Wissenschaftlerin betont, dass die Ergebnisse nicht nur dazu beitragen, die Rolle von Geschmacksrezeptoren im Magen besser zu verstehen, sondern sie würden auch zeigen, dass HGT-1-Zellen als Ersatzmodell für Geschmackszellen geeignet sein könnten.

Das Forschungsteam ist sich einig, dass die Ergebnisse neue Einblicke in die Regulation der Magensäureproduktion ermöglichen und so langfristig zu innovativen Ansätzen in der Behandlung von Magenerkrankungen führen. Weitere Studien seien jedoch erforderlich, um das Wissen über die molekularen Regulationsmechanismen und intrazellulären Signalwege zu vertiefen.

Publikation: Richter, P., Andersen, G., Kahlenberg, K., Mueller, A.U., Pirkwieser, P., Boger, V., and Somoza, V. (2024). Sodium-Permeable Ion Channels TRPM4 and TRPM5 are Functional in Human Gastric Parietal Cells in Culture and Modulate the Cellular Response to Bitter-Tasting Food Constituents. J Agric Food Chem. 10.1021/acs.jafc.3c09085.
https://pubs.acs.org/doi/10.1021/acs.jafc.3c09085

Kontakte:

Experten-Kontakt:

Prof. Dr. Veronika Somoza
Direktorin des Leibniz-Institut für Lebensmittel-Systembiologie
an der Technischen Universität München (Leibniz-LSB@TUM)
Leiterin der Arbeitsgruppe Metabolic Function & Biosignals
Lise-Meitner-Str. 34
85354 Freising
E-Mail: v.somoza.leibniz-lsb@tum.de

Dr. Gaby Andersen
Arbeitsgruppe Metabolic Function & Biosignals am Leibniz-LSB@TUM
Tel.: +49 8161 71-2930
E-Mail: g.andersen.leibniz-lsb@tum.de

Phil Richter
Arbeitsgruppe Metabolic Function & Biosignals am Leibniz-LSB@TUM
Tel.: +49 8161 71-2727
E-Mail: p.richter.leibniz-lsb@tum.de

Pressekontakt am Leibniz-LSB@TUM:
Dr. Gisela Olias
Wissenstransfer, Presse- und Öffentlichkeitsarbeit
Tel.: +49 8161 71-2980
E-Mail: g.olias.leibniz-lsb@tum.de
https://www.leibniz-lsb.de

Informationen zum Institut:

Das Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München besitzt ein einzigartiges Forschungsprofil an der Schnittstelle zwischen Lebensmittelchemie & Biologie, Chemosensoren & Technologie sowie Bioinformatik & Maschinellem Lernen. Weit über die bisherige Kerndisziplin der klassischen Lebensmittelchemie hinausgewachsen, leitet das Institut die Entwicklung einer Systembiologie der Lebensmittel ein. Sein Ziel ist es, neue Ansätze für die nachhaltige Produktion ausreichender Mengen an Lebensmitteln zu entwickeln, deren Inhaltsstoff- und Funktionsprofile an den gesundheitlichen und nutritiven Bedürfnissen, aber auch den Präferenzen der Verbraucherinnen und Verbraucher ausgerichtet sind. Hierzu erforscht es die komplexen Netzwerke sensorisch relevanter Lebensmittelinhaltsstoffe entlang der gesamten Wertschöpfungskette mit dem Fokus, deren physiologische Wirkungen systemisch verständlich und langfristig vorhersagbar zu machen.

Das Leibniz-Institut ist ein Mitglied der Leibniz-Gemeinschaft (https://www.leibniz-gemeinschaft.de/), die 97 selbständige Forschungseinrichtungen verbindet. Ihre Ausrichtung reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Raum- und Sozialwissenschaften bis zu den Geisteswissenschaften. Leibniz-Institute widmen sich gesellschaftlich, ökonomisch und ökologisch relevanten Fragen. Sie betreiben erkenntnis- und anwendungsorientierte Forschung, auch in den übergreifenden Leibniz-Forschungsverbünden, sind oder unterhalten wissenschaftliche Infrastrukturen und bieten forschungsbasierte Dienstleistungen an. Die Leibniz-Gemeinschaft setzt Schwerpunkte im Wissenstransfer, vor allem mit den Leibniz-Forschungsmuseen. Sie berät und informiert Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Leibniz-Einrichtungen pflegen enge Kooperationen mit den Hochschulen – u.a. in Form der Leibniz-WissenschaftsCampi, mit der Industrie und anderen Partnern im In- und Ausland. Sie unterliegen einem transparenten und unabhängigen Begutachtungsverfahren. Aufgrund ihrer gesamtstaatlichen Bedeutung fördern Bund und Länder die Institute der Leibniz-Gemeinschaft gemeinsam. Die Leibniz-Institute beschäftigen rund 20.000 Personen, darunter 10.000 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei mehr als 1,9 Milliarden Euro.

+++ Bleiben Sie über unseren X-Kanal auf dem Laufenden twitter.com/LeibnizLSB +++


Wissenschaftliche Ansprechpartner:

Prof. Dr. Veronika Somoza
Direktorin des Leibniz-Institut für Lebensmittel-Systembiologie
an der Technischen Universität München (Leibniz-LSB@TUM)
Leiterin der Arbeitsgruppe Metabolic Function & Biosignals
Lise-Meitner-Str. 34
85354 Freising
E-Mail: v.somoza.leibniz-lsb@tum.de

Dr. Gaby Andersen
Arbeitsgruppe Metabolic Function & Biosignals am Leibniz-LSB@TUM
Tel.: +49 8161 71-2930
E-Mail: g.andersen.leibniz-lsb@tum.de

Phil Richter
Arbeitsgruppe Metabolic Function & Biosignals am Leibniz-LSB@TUM
Tel.: +49 8161 71-2727
E-Mail: p.richter.leibniz-lsb@tum.de


Originalpublikation:

Richter, P., Andersen, G., Kahlenberg, K., Mueller, A.U., Pirkwieser, P., Boger, V., and Somoza, V. (2024). Sodium-Permeable Ion Channels TRPM4 and TRPM5 are Functional in Human Gastric Parietal Cells in Culture and Modulate the Cellular Response to Bitter-Tasting Food Constituents. J Agric Food Chem. 10.1021/acs.jafc.3c09085.
https://doi.org/10.1021/acs.jafc.3c09085


Weitere Informationen:

https://www.leibniz-lsb.de/presse-oeffentlichkeit/pressemitteilungen/pm-20221011… Ergänzende Informationen zum Thema Bitterstoffe und Magensäuresekretion


Bilder

Arbeiten unter sterilen Bedingungen im Zellkulturlabor.

Arbeiten unter sterilen Bedingungen im Zellkulturlabor.
J. Krpelan
Leibniz-LSB@TUM


Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Biologie, Chemie, Ernährung / Gesundheit / Pflege, Medizin
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch


 

Quelle: IDW