Automatisierte Hochdurchsatz-Sortierung lebender Zellen mit Laserlicht und KI



Teilen: 

12.03.2024 11:03

Literature advertisement

Plötzlich gesund

Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‘Wissenschaft’, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.

Hier geht es weiter …

Automatisierte Hochdurchsatz-Sortierung lebender Zellen mit Laserlicht und KI

Tests an lebenden Zellkulturen werden für die personalisierte Medizin, Wirkstoffentwicklung und klinische Forschung immer wichtiger. Ein neues KI-gestütztes Hochdurchsatzverfahren der Aachener Fraunhofer-Institute für Lasertechnik ILT und für Produktionstechnologie IPT ermöglicht es, spezifische Zelltypen automatisiert zu isolieren. Mit dem so genannten LIFTOSCOPE können Labore dutzende lebende Zellen pro Sekunde lokalisieren, identifizieren sowie ihre Größe und Schwerpunkte vermessen und analysieren, um sie durch Laser-Induced Forward Transfer (LIFT) in Mikrotiterplatten zu transferieren.

Auf der analytica 2024 in München wird die Fraunhofer-Gesellschaft das neuartige Verfahren erstmals öffentlich in Halle A3 auf Stand 407 präsentieren.

Pluripotente Stammzellen sind der Schlüssel zur personalisierten Medizin. Wenn es gelingt, sie aus Blut- und Gewebeproben zu isolieren, lassen sich daraus Zelltypen verschiedener Gewebearten nachzüchten. Diese Zellkulturen ermöglichen individuelle Wirkstoff- und Unverträglichkeitstests außerhalb des Körpers und sind ein wertvolles Werkzeug bei der Entwicklung hochspezifischer personalisierter Therapien. Doch um die personalisierte Behandlung in der klinischen Routine zu etablieren, bedarf es effizienter Verfahren zum Isolieren der pluripotenten Stammzellen. Daneben ist auch die Pharmaforschung auf der Suche nach Verfahren, um so genannte High-Producer-Zellen für die Wirkstoffentwicklung aus polyklonalen Kulturen zu separieren und in monoklonale Kulturen zu transferieren, ohne die Zellvitalität oder Teilungsfähigkeit dabei zu beeinträchtigen. Auch Kliniken mussten in der Pandemie erkennen, dass die verfügbaren Verfahren zur Isolation und Analyse von (Immun-)Zellen aus Patientenproben ihre Labore an Kapazitätsgrenzen bringen.

Die Fraunhofer-Institute für Lasertechnik ILT und für Produktionstechnologie IPT stellen auf der Weltleitmesse für Labortechnik, Analytik und Biotechnologie, analytica ‘24, (9. bis 12. April 2024) ein Gerät vor, welches dank vollautomatisierter Zellsortierung und -isolation für eine deutliche Effizienzsteigerung sorgt. Das LIFTOSCOPE integriert einen KI-gestützten Hochdurchsatzprozess in ein marktübliches inverses Mikroskop, das über eine Hochgeschwindigkeitskamera und eine Blitzlichtquelle verfügt. Um Zellen binnen Mikrosekunden zu identifizieren und mit Überlebensraten von über 90 Prozent auf Mikrotiterplatten zu transferieren, vereint das LIFTOSCOPE gleich drei Hightech-Prozesse in einem Gerät.

Mit KI und Laser zur vollautomatisierten Zellselektion

Das Projektteam hat den am Fraunhofer ILT entwickelten, patentgeschützten MIR LIFT-Prozess direkt in den Strahlengang des Mikroskops integriert. Ein daran angebundenes Kamerasystem liefert hundert hochaufgelöste Bilder pro Sekunde. In diesen Bilddaten identifiziert die am Fraunhofer IPT entwickelte KI auf Basis semantischer Segmentierung die gesuchten Zelltypen. Die KI kann hierfür auf das Erkennen von pluripotenten Stammzellen, ebenso wie von High-Producer-Zellen oder Immunzellen trainiert werden. Zudem ermittelt die KI die exakte Position und Schwerpunkte der Zellen. Im MIR LIFT-Verfahren werden sie dann mit Raten von bis zu 100 Hertz eine nach der anderen auf eine Mikrotiterplatte transferiert. »Je nach Zelltyp überleben bis zu 100 Prozent aller Zellen diese Prozedur«, erklärt Dr. Nadine Nottrodt, Gruppenleiterin Biofabrikation, die das gemeinschaftliche Entwicklungsprojekt seitens des Fraunhofer ILT gemeinsam mit Projektleiter Richard Lensing begleitet.

Das LIFT-Verfahren selbst ist faszinierend einfach. Ein neun Nanosekunden kurzer Laserpuls mit wenigen Mikrojoule Pulsenergie genügt, um das flüssige Medium direkt unter der anvisierten Zelle zur Bildung einer Dampfblase anzuregen. Die zuvor enzymatisch aus ihrem Verbund gelöste Zelle wird von der Blase kurz angehoben. Sobald die Blase kollabiert, bildet sich ein Sog, der die Zelle in das Kulturgefäß der Mikrotiterplatte spült. »In den Proben sind die Zellen zufällig verteilt. Daher fährt unser System ein vorgegebenes Raster ab und transferiert Zellen, die sich jeweils im Umkreis von 50 Mikrometern um den Fokuspunkt befinden«, erklärt Lensing. Dort könne das LIFTOSCOPE die Zellen in dem hochpräzisen, optisch überwachten Laser-Prozess exakt ansteuern und transferieren. Bei Bedarf lasse sich der LIFT-Prozess mit fluoreszierenden Markern kombinieren, um spezifische Zellen zu identifizieren. Doch auch ohne Additive funktioniert das Verfahren robust. Das hat zweierlei Gründe: Einerseits gewährleistet die präzise Lokalisation durch die KI, dass die Zellen tatsächlich von dem Jet erfasst und in die Mikrotiterplatten befördert werden. Zum anderen ist es dem Fraunhofer ILT durch kontinuierliche Weiterentwicklung des LIFT-Verfahrens gelungen, die anfangs benötigten metallischen Absorber aus dem Prozess zu eliminieren. Durch den Einsatz eines Mid-Infrarot-Lasers mit 2940 Nanometern Wellenlänge wird nun das ohnehin im System befindliche Wasser direkt angeregt, während die Polymere der Probenträger diese Wellenlänge nicht oder kaum absorbieren.

Kontinuierliche Bewegung versus Stop-and-Go-Prozess

Das Ziel des Projektteams ist es, die vollautomatisierte Zellerkennung und den LIFT-Prozess im Sinne hoher Durchsätze zu verstetigen und die Gesamtprozesszeit für eine komplette Mikrotiterplatte auf zehn Minuten zu begrenzen. Das setzt für die Bildgebung wie auch für die Positionierung des Laserfokus im Prozesstakt eine hochpräzise Aktorik voraus. Mit dieser wird einerseits die benötigte Bildauflösung für die KI-gestützte Zellerkennung und -vermessung und andererseits die auf 25 Mikrometer genaue Positionierung des Laserfokus direkt unterhalb der Zelle gewährleistet. Binnen 200 Mikrosekunden ist ein Einzelzelltransfer abgeschlossen. Innerhalb von 100 Sekunden lassen sich mit dem LIFTOSCOPE 10.000 Zellen ansteuern und auf die Mikrotiterplatten transferieren.

Das Fraunhofer Team hat zwei unterschiedliche Strategien zur Bewegung der Zellkultur verfolgt. »Im Stop-and-Go-Betrieb ist vor und nach dem Zell-LIFT eine kurze Ruhephase einzulegen, weil jeder Halt hydrodynamische Strömungen in der Probe auslöst, die sich vor dem nächsten Zelltransfer erst beruhigen müssen«, berichtet Nottrodt. Zwar erlaube diese Strategie das Sortieren von Proben mit vielen verschiedenen Zellen und senke dadurch den Aufwand der Probenaufbereitung. Doch die Pausen gehen zulasten der Effizienz. Im kontinuierlichen Prozess, dem zweiten Ansatz, fährt das LIFTOSCOPE die Probenträger in einem je nach gesuchtem Zellentyp definierten Raster von bis zu 1600 Linien mit 50 Mikrometern Abstand ab – und transferiert in dieser fortlaufenden Bewegung jede Zelle, die in den Fokus gerät. Der Zeitvorteil dieser Methode wächst, je mehr Zellen transferiert werden. Schon bei 10.000 transferierten Zellen ist der kontinuierliche Prozess mehr als doppelt so schnell, bei 100.000 Zellen bereits um ein 20-faches schneller als der Stop-and-Go-Betrieb.

Das neue KI- und Laser-basierte Verfahren weist den Weg zu einer vollautomatisierten, hocheffizienten Isolierung von lebenden Zellen. Laut Nottrodt zeigt der bisherige Projektverlauf, dass eine Synchronisation des Zell-LIFTs mit der Bildfrequenz der Highspeed-Kamera – und damit eine Einzelzellsortierung von 100 Zellen pro Sekunde erreichbar ist. Im nächsten Schritt gehe es darum, das prototypische Verfahren zur Marktreife zu entwickeln. »Interessierte können sich auf dem Gemeinschaftsstand der Fraunhofer-Gesellschaft in Halle A3/407 der analytica 2024 gern ein genaueres Bild vom LIFTOSCOPE machen«, laden Nottrodt und Lensing ein. Mit Blick auf das Potenzial der personalisierten Medizin sei es wünschenswert, dass diese Technologie schnell den Weg in die medizinische, pharmazeutische und klinische Praxis finde.


Wissenschaftliche Ansprechpartner:

Dr. Nadine Nottrodt
Gruppenleiterin Biofabrikation
Telefon +49 241 8906-605
nadine.nottrodt@ilt.fraunhofer.de

Richard Lensing M.Sc.
Gruppe Biofabrikation
Telefon +49 241 8906-8336
richard.lensing@ilt.fraunhofer.de

Dr. Achim Lenenbach
Abteilungsleiter Lasermedizintechnik und Biophotonik
Telefon +49 241 8906-124
achim.lenenbach@ilt.fraunhofer.de

Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
www.ilt.fraunhofer.de


Weitere Informationen:

http://www.ilt.fraunhofer.de


Bilder

Das LIFTOSCOPE vereint Hochgeschwindigkeits-mikroskopie, KI-Analyse und Lokalisation lebender Zellen und Zellverbände mit dem laserinduzierten Vorwärts-Transfer (LIFT).

Das LIFTOSCOPE vereint Hochgeschwindigkeits-mikroskopie, KI-Analyse und Lokalisation lebender Zellen

© Fraunhofer ILT, Aachen.

Das MIR LIFT-Verfahren transferiert lebende Zellen mit hoher Rate von bis zu 100 Hz nacheinander auf Mikrotiterplatten (MTP).

Das MIR LIFT-Verfahren transferiert lebende Zellen mit hoher Rate von bis zu 100 Hz nacheinander auf

© Fraunhofer ILT, Aachen.


Merkmale dieser Pressemitteilung:
Journalisten, Wirtschaftsvertreter, Wissenschaftler
Biologie, Chemie, Elektrotechnik, Informationstechnik, Medizin
überregional
Forschungs- / Wissenstransfer, Forschungsergebnisse
Deutsch


 

Quelle: IDW