Gleichheit im Gehirn



Teilen: 

22.12.2021 13:44

Gleichheit im Gehirn

Gleiche Rechte im Gehirn? Ein wissenschaftlicher Artikel zeigt, dass die Forderung nach Gleichberechtigung auch einen der kleinsten Bestandteile des Gehirns betrifft: die Dendriten. Das sind die Abschnitte der Nervenzellen, die Reize empfangen und weiterleiten. Die Ergebnisse wurden in der Fachzeitschrift Neuron veröffentlicht.

Literature advertisement

Plötzlich gesund

Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‘Wissenschaft’, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.

Hier geht es weiter …

Wir wissen, dass unterschiedlich geformte Neuronen Informationen unterschiedlich verarbeiten. Aber tragen die unterschiedlichen Formen andererseits auch dazu bei, dass ihre Funktionen ähnlicher werden? Hermann Cuntz, Forscher am Ernst Strüngmann Institut (ESI) für Neurowissenschaften, und Kolleg:innen berichten, dass Neuronen mit sehr unterschiedlichen Größen und Formen ihrer Fortsätze, den Dendriten, eine überraschende Gleichheit aufweisen. Die Forscher nannten dieses neue Prinzip dendritische Konstanz. Ihre Ergebnisse wurden kürzlich in Neuron veröffentlicht, einer der führenden Fachzeitschriften auf dem Gebiet der Neurowissenschaften.

Dendriten führten Schattendasein

In den 1960er Jahren gelang es Wilfrid Rall, Gleichungen aus der Kabeltheorie auf Neuronen anzuwenden. Damit konnte er die Ausbreitung von Reizen in dendritischen Bäumen, den Eingangsstrukturen von Neuronen, berechnen. Bis dahin war der Beitrag der Dendriten zur Funktion der Neuronen weitgehend ignoriert worden. Rall konnte jedoch zeigen, dass sich elektrische Signale von einzelnen Inputs über die Dendriten hinweg dramatisch abschwächen und auf raffinierte Weise interagieren können – ein Wendepunkt für unser Verständnis neuronaler Informationsverarbeitung. Ralls Kabeltheorie ist heute die Grundlage für alle detaillierten Modelle, die einzelne Neuronen oder ganze Schaltkreise im Gehirn darstellen. In der Zwischenzeit wurden verschiedene Zelltypen aufgrund der unterschiedlichen Form ihrer Dendriten mit einer Vielzahl von elektrophysiologischen Verhaltensweisen in Verbindung gebracht.

Reizantworten sind unabhängig von Dendritenform oder -größe

In ihrer kürzlich erschienenen Arbeit untersuchten Hermann Cuntz und Kolleg:innen eine Eigenschaft der Kabeltheorie, die sich über verschiedene Dendritenarten hinweg verallgemeinern lässt: Anstatt die Auswirkungen einzelner Reize zu verfolgen, betrachteten die Autoren die synaptische Aktivität, wenn sie sich über den gesamten Dendriten verteilt oder über Teile davon. Interessanterweise neigt das Kabel dann dazu, auf einen einzigen Punkt zu kollabieren, wodurch die Reaktionen des Neurons unabhängig von der Form oder Größe des Dendriten sind. Dies bedeutet, dass sich die Input-Output-Funktion von Neuronen praktisch nicht ändert, wenn Dendriten während der Hirnentwicklung massive strukturelle Veränderungen erfahren. Daher der Begriff “dendritische Konstanz” zur Bezeichnung dieses Phänomens. Die Konstanz der Dendriten könnte nicht nur während der Hirnentwicklung eine Rolle spielen, sondern auch im Zusammenhang mit neurologischen Erkrankungen von Bedeutung sein: Im Anfangsstadium einer solchen Erkrankung, bauen Neuronen, die noch gesund sind, ihre Dendriten um, um die Informationsverarbeitung im neuronalen Netzwerk so lange wie möglich aufrechtzuerhalten. Die dendritische Konstanz ist also ein natürlicher Mechanismus, der teilweise den Schäden entgegenwirkt, die durch verschiedene Hirnerkrankungen wie Alzheimer oder Epilepsie verursacht werden. Infolgedessen kann die dendritische Konstanz dazu beitragen, das Auftreten von Krankheitssymptomen wie Gedächtnisverlust zu verzögern.

Beitrag zu 3R

Die vorliegende Arbeit basiert auf der Verwendung großer Datensätze. Dabei handelt es sich um eine Kooperation zwischen dem Cuntz-Lab am ESI, Thomas Deller vom Fachbereich Anatomie der Goethe-Universität in Frankfurt und der Gruppe von Peter Jedlicka am neu gegründeten 3R-Zentrum der Justus-Liebig-Universität in Gießen. Im Einklang mit dem 3R-Prinzip des Tierschutzes (reduce, replace, refine), hat sich dieser Fall als ein Paradebeispiel dafür erwiesen, dass Computermodelle hervorragende Werkzeuge für die Nutzung gemeinsam genutzter experimenteller Datensätze sind. Denn dadurch konnte die Zahl der erforderlichen neuen Tierversuche verringert werden.

Besseres Verständnis allgemeiner Prinzipien

In gewisser Weise sind Neuronen also gleicher als man denkt. Wichtig ist jedoch, dass das Prinzip der dendritischen Konstanz nicht die Bedeutung synaptischer Lernregeln und lokaler Berechnungen in Dendriten schmälert, die Neuronen einzigartig machen und die Neurowissenschaftler:innen sicher noch lange beschäftigen werden. Dennoch sind die Autoren der Meinung, dass die Erkenntnis, wie sich Dendriten über verschiedene Skalen hinweg gleich verhalten können, zu einem besseren Verständnis der allgemeinen Prinzipien neuronaler Funktionen beitragen wird. Interessanterweise hat eine aktuelle Folgestudie gezeigt, dass die Normalisierung der synaptischen Eingangswerte auf der Grundlage des Mechanismus der dendritischen Konstanz die Lernleistung in künstlichen neuronalen Netzen verbessert. Somit könnte die dendritische Konstanz nicht nur für die Neurowissenschaften, sondern auch für die Gemeinschaft des maschinellen Lernens von Interesse sein.


Wissenschaftliche Ansprechpartner:

Hermann Cuntz, Ernst Strüngmann Institute for Neuroscience


Originalpublikation:

Cuntz H, Bird AD, Mittag M, Beining M, Schneider M, Mediavilla L, Hoffmann FZ, Deller T, Jedlicka P (2021). A general principle of dendritic constancy: A neuron’s size- and shape-invariant excitability. Neuron 109(22), 3647-3662.


Weitere Informationen:

https://doi.org/10.1016/j.neuron.2021.08.028


Merkmale dieser Pressemitteilung:
Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler, jedermann
Biologie, Ernährung / Gesundheit / Pflege, Medizin
überregional
Forschungsergebnisse, Kooperationen
Deutsch


Quelle: IDW