Teilen:
28.06.2024 12:20
Plötzlich gesund
Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‘Wissenschaft’, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.
Multiples Myelom: Aggressive Tumoren früh erkennen
Forschungserfolg durch erste umfassende Untersuchung des Genoms und Proteoms
Das Multiple Myelom ist eine der häufigsten Krebserkrankungen der Immunzellen des Knochenmarks. Bis heute gilt sie als unheilbar. Auch wenn eine Therapie zunächst anschlägt, kehrt der Krebs zurück. Um schneller und zielgerichteter eingreifen zu können, haben Berliner Forschende weiteren Partnern die Erkrankung umfassend molekular untersucht. Wie sich besonders aggressive Tumorvarianten frühzeitig erkennen lassen, beschreibt das Team jetzt im Fachmagazin Nature Cancer*. Es zeigt auf, wie sich Veränderungen im Erbgut auf das Protein-Profil der Tumorzellen und damit auf die Krankheitsmechanismen auswirken.
Das Multiple Myelom ist eine Krebserkrankung, bei der Immunzellen des Knochenmarks, sogenannte Plasmazellen, entarten. Plasmazellen sind für die Produktion von Antikörpern verantwortlich. Jeder Mensch verfügt über eine Vielzahl unterschiedlicher Plasmazellen, die unterschiedliche Antikörper in großer Zahl bilden. So kann der Körper verschiedene Krankheitserreger erkennen und bekämpfen. Im Fall des Multiplen Myeloms entwickelt sich eine einzelne Plasmazelle zur Tumorzelle. Sie vermehrt sich ungehemmt und bildet eine monoklonale Zellpopulation, das heißt, es entstehen viele Zellen, die alle exakt gleich und zunächst genetisch identisch sind. Auch sie produzieren oft Antikörper in großer Zahl oder Bruchstücke von ihnen – jedoch sind diese funktionslos.
Im Verlauf der Krankheit entstehen meist mehrere Tumorherde an vielen Stellen des Knochenmarks, daher der Name: Multiples, also vielfaches, Myelom. Immunschwäche, Nierenversagen, Knochenabbau und Knochenbrüche sind nur einige der Folgen des unkontrollierten Zellwachstums. Trotz therapeutischer Fortschritte und der Einführung neuer zellulärer Immuntherapien gibt es für das Multiple Myelom heute noch keine Heilung. Ein Forschungsteam um Prof. Jan Krönke, Medizinische Klinik mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie der Charité – Universitätsmedizn Berin, und Dr. Philipp Mertins, Leiter der Technologieplattform Proteomik von Max Delbrück Center und Berlin Institute of Heath in der Charité (BIH), hat sich daher auf die Suche nach neuen diagnostischen und therapeutischen Ansätzen begeben.
Welchen Weg schlägt der Tumor ein?
Jede Krebserkrankung ist anders, so auch beim Multiplen Myelom. Tumorherde entwickeln sich individuell verschieden und mit unterschiedlicher Geschwindigkeit. Das erschwert eine Einschätzung des Krankheitsverlaufs und die Wahl der optimalen Behandlung. Während sich veränderte Plasmazellen manchmal nur wenig verbreiten, verhalten sie sich in anderen Fällen äußerst aggressiv, was mit einer schlechten Perspektive für den weiteren Krankheitsverlauf einhergeht.
Was also macht die Verläufe bei Multiplem Myelom so unterschiedlich? Gemeinsam mit Expert:innen für Proteinanalysen des Max Delbrück Center und des BIH haben die Forschenden genetische und molekulare Veränderungen in den Tumorzellen bei einer Gruppe von mehr als einhundert Erkrankten im Detail untersucht. Eingeflossen sind Daten von Patient:innen der Deutschen Studiengruppe Multiples Myelom (DSMM), die am Universitätsklinikum Würzburg koordiniert wird. Die Forschenden konnten somit auch klinische Daten von einheitlich behandelten Patient:innen über einen Zeitraum von acht Jahren und länger nach der Erstdiagnose einbeziehen.
Systemmedizin und sehr große Datenmengen
Während für andere Krebsarten die Veränderungen im Genom und ihre Auswirkungen auf das Proteom bereits gut beschrieben sind, ist dies die erste umfangreiche proteogenomische Studie für das Multiple Myelom. „Um die Krankheitsmechanismen aufzuklären, reichen Daten zur Genetik allein nicht aus“, sagt Dr. Mertins. „Wir wollten wissen, welche Folgen genetische Veränderungen auf der Ebene der Proteine haben und diese molekularbiologischen Daten mit dem tatsächlichen Verlauf bei den Patientinnen und Patienten abgleichen.“ Bei der Erhebung und Auswertung der umfangreichen Datenmengen hatte das Team Unterstützung durch Expert:innen an Charité, BIH und des Deutschen Konsortiums für Translationale Krebsforschung (DKTK).
Neueste massenspektrometrische Methoden ermöglichten es, das Proteinprofil entarteter Plasmazellen zu erstellen und mit dem Profil gesunder Plasmazellen von nicht erkrankten Personen zu vergleichen. Das Ergebnis: Sowohl genetische Veränderungen als auch Veränderungen in den Signalwegen führen zu einer unkontrollierten Aktivierung der Krebszellen. Regulatorische Prozesse auf der Proteinebene hatten dabei den stärkeren Einfluss. Die Forschenden konnten eine Proteinkonstellation ausfindig machen, die unabhängig von bekannten Risikofaktoren auf einen besonders aggressiven Krankheitsverlauf hinweist.
Aufbruch zu neuen Therapien
„Die Erkenntnisse werden dazu beitragen, Patientinnen und Patienten künftig besser in Untergruppen einzuteilen und damit die Therapie zu personalisieren“, folgert Prof. Krönke. „Wir haben wichtige Proteine und Signalwege identifiziert, die Grundlage für noch wirksamere und verträglichere Therapien für das Multiple Myelom sein können, zum Beispiel für Immuntherapien wie die CAR-T-Zell-Therapie.“ Welche der gefundenen Zielstrukturen für neue therapeutische Ansätze tatsächlich infrage kommen, werden die Wissenschaftler:innen in weiteren Schritten untersuchen.
Für die Forschung und die anwendungsbezogene Entwicklung ist die Studie eine zentrale Ressource, betont Dr. Evelyn Ramberger, Erstautorin der Studie: „Um den komplexen Datensatz handhabbar zu machen, haben wir ein interaktives und frei verfügbares Online-Tool programmiert.“ Damit haben Krebsforscher:innen einen einfachen Zugang zu den Ergebnissen und können die Informationen für die Entwicklung neuer Therapien und Tests zur Therapiesteuerung nutzen. So könnten Patient:innen mit einer besonders aggressiven Form des Multiplen Myeloms möglicherweise gleich zu Beginn mit einer intensiveren Therapie behandelt werden.
*Ramberger E et al. The proteogenomic landscape of multiple myeloma reveals insights into disease biology and therapeutic opportunities. Nature Cancer 2024 Jun 28. doi: 10.1038/s43018-024-00784-3
Massenspektrometrie
Die Massenspektrometrie ist ein technisches Verfahren zur Analyse der Masse von Molekülen und Atomen. Die zu untersuchende Substanz wird dabei ionisiert und in eine Gasphase überführt. Die entstandenen Ionen werden mithilfe eines elektrischen Feldes stark beschleunigt und in der Analyseeinheit des Massenspektrometers nach dem Verhältnis ihrer Masse zu ihrer Ladung sortiert. Das Massenspektrum einer Substanz gibt Aufschluss über ihre molekulare Zusammensetzung. Daher eignet sich die Massenspektrometrie zur Identifizierung, Charakterisierung und Quantifizierung einer Vielzahl von Biomolekülen, wie Proteinen, Metaboliten, Zuckern und Fetten, die sich je nach Krankheitsbild und Individuum anders verhalten.
Über die Studie
Die Studie wurde unterstützt durch das Deutsche Konsortium für Translationale Krebsforschung (DKTK), die Deutsche Forschungsgemeinschaft (DFG), das Bundesministerium für Bildung und Forschung (BMBF), “Mass spectrometry in Systems Medicine” (MSCorSys), die Wilhelm-Sander-Stiftung und die Berliner Krebsgesellschaft. Neben Forschenden der Charité, des Berlin Institute of Health in der Charité (BIH) und des Max Delbrück Center haben Expert:innen des Deutschen Krebsforschungszentrums (DKFZ) sowie der Universitätskliniken Würzburg und Ulm, und die Deutsche Studiengruppe Multiples Myelom (DSMM, Koordination Prof. Stefan Knop und Prof. Hermann Einsele), maßgeblich zu den Arbeiten beigetragen.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Jan Krönke
Medizinische Klinik mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie
Campus Benjamin Franklin
Charité – Universitätsmedizin Berlin
Tel. +49 30 450 513 382
Originalpublikation:
*Ramberger E et al. The proteogenomic landscape of multiple myeloma reveals insights into disease biology and therapeutic opportunities. Nature Cancer 2024 Jun 28. doi: 10.1038/s43018-024-00784-3
Weitere Informationen:
https://www.nature.com/articles/s43018-024-00784-3
https://haema-cbf.charite.de/
https://www.mdc-berlin.de/proteomics
https://www.bihealth.org/de/forschung/wissenschaftliche-infrastruktur/core-units…
https://www.charite.de/service/pressemitteilung/artikel/detail/massenspektrometr…
Bilder
Die Massenspektrometrie ermöglicht es, ein genaues Proteinprofil der Krebszellen zu erstellen. Die A …
© Pablo Castagnola l Max Delbrück Center
Merkmale dieser Pressemitteilung:
Journalisten, jedermann
Biologie, Medizin
überregional
Forschungsergebnisse
Deutsch