Wie Moleküle sich selbst organisieren



Teilen: 

19.03.2020 15:06

Wie Moleküle sich selbst organisieren

Kieler Forschende kontrollieren die Größe von Molekül-Superstrukturen auf Oberflächen

Die meisten technischen Geräte werden von Menschen oder Maschinen aus einzelnen Komponenten Stück für Stück nach einem Bauplan zusammen-gesetzt. Lebende Organismen hingegen basieren auf einem anderen Konzept, Moleküle ordnen sich selbständig zu größeren Einheiten an. Ein einfaches Beispiel für diese molekulare Selbstorganisation ist das Wachsen nahezu perfekter Kristalle aus Zucker- oder Salzmolekülen, die sich ziellos in einer Lösung bewegen. Um die Bildung makroskopischer Strukturen aus Molekülen besser zu verstehen, hat ein Forschungsteam aus der Experimentellen und Angewandten Physik sowie der Organischen Chemie der Christian-Albrechts-Universität zu Kiel (CAU) derartige Prozesse mit maßgeschneiderten Molekülen nachgeahmt. Wie sie kürzlich in der Fachzeitschrift Angewandte Chemie berichteten, konnten sie verschiedene Muster von Molekülen unterschiedlicher Größe herstellen, darunter regelrechte „Superstrukturen“.

Die Forschenden brachten dreieckige Moleküle (Methyltrioxatriangulenium) auf Gold- und Silberoberflächen auf und untersuchten mit einem Rastertunnel-mikroskop die sich bildenden wabenförmigen Molekülanord¬nungen. Sie bestehen aus regelmäßigen Mustern, deren Größe die Wissenschaftler steuern konnten. „Unsere größten Muster enthalten Untereinheiten mit je 3.000 Molekülen – das sind etwa zehnmal mehr als bisher berichtet wurde“, sagt Dr. Manuel Gruber vom Institut für Experimentelle und Angewandte Physik der CAU.

Das Forschungsteam entwickelte außerdem ein Modell der Kräfte zwischen den Molekülen, die die Strukturbildung bestimmen. „Das Besondere an unseren Ergebnissen ist, dass wir die unerwartet großen Strukturen erklären, vorhersagen und nun auch gezielt erzeugen können”, so Gruber weiter. „Das ist nützlich für nanotechnologische Anwendungen wie die Funktionalisierung von Oberflächen.“

Die Arbeit wurde gefördert von der Deutschen Forschungsgemeinschaft DFG im Rahmen des Kieler Sonderforschungsbereichs 677 “Funktion durch Schalten” und des DFG-Schwerpunktprogramms 1928 „Koordinationsnetzwerke als Bausteine für Funktionssysteme“.

Bildmaterial zum Download steht bereit:
https://www.uni-kiel.de/de/pressemitteilungen/2020/075-superstructure-1.jpg
Bildunterschrift: Die Aufnahme aus dem Rastertunnelmikroskop zeigt eine großflächige Struktur, zu der sich Moleküle auf einer Silberoberfläche selbsttätig angeordnet haben. Jeder Punkt zeigt ein Molekül mit einem Durchmesser von etwa einem Nanometer. Das resultierende Muster besteht aus Dreiecken von 45 Nanometern Kantenlänge.
Copyright: Manuel Gruber und Torben Jasper-Tönnies

Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt »Nanowissenschaften und Oberflächenforschung« (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Physik, Chemie, Ingenieurwissenschaften und Life Sciences zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf http://www.kinsis.uni-kiel.de


Wissenschaftliche Ansprechpartner:

Prof. Dr. Rainer Herges
Otto Diels-Institut für Organische Chemie
Tel. +49 (0)431 880 2440
Mail: rherges@oc.uni-kiel.de
Web: http://www.otto-diels-institut.de/en/otto-diels-institute-of-organic-chemistry

Dr. rer. nat. Manuel Gruber
Oberflächenphysik
Tel. +49 (0)431 880 5091
Mail: gruber@physik.uni-kiel.de
Web: http://www.ieap.uni-kiel.de/surface


Originalpublikation:

T. Jasper-Tönnies, M. Gruber, S. Ulrich, R. Herges and R. Berndt, Coverage‐Controlled Superstructures of C3 Symmetric Molecules: Honeycomb versus Hexagonal Tiling, Angew. Chem. Int. Ed. https://doi.org/10.1002/ange.202001383


Weitere Informationen:

https://www.uni-kiel.de/de/detailansicht/news/075-superstrukturen


Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Chemie, Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch


Quelle: IDW