Besondere RNA unterdrückt Bildung von Brustkrebszellen



Teilen: 

16.01.2024 14:18

Literature advertisement

Plötzlich gesund

Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‘Wissenschaft’, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.

Hier geht es weiter …

Besondere RNA unterdrückt Bildung von Brustkrebszellen

Brustkrebs ist die häufigste Krebserkrankung bei Frauen. Häufig geht die Entstehung des Mammakarzinoms von Epithelzellen in der Brustdrüse aus – genau den Zellen, die sich während und nach der Schwangerschaft auf die Milchbildung spezialisieren. Ein Team von Forschenden der Universitäten Jena und Shenzhen sowie des Universitätsklinikums Jena hat diesen Prozess der Spezialisierung nun genauer unter die Lupe genommen und dabei einen molekularen Mechanismus entschlüsselt, der offenbar auch bei der Entstehung von Krebs eine wichtige Rolle spielt. Möglicherweise lassen sich auf der Grundlage dieser Forschungsergebnisse neue Diagnoseverfahren und Behandlungsmethoden von Brustkrebs entwickeln.

Die Differenzierung von Zellen, also ihre Spezialisierung, ist wesentlicher Bestandteil eines Organismus’ – nur durch sie können Zellen unterschiedliche Aufgaben übernehmen. Während der Laktogenese – also dem von Hormonen ausgelösten Prozess, der die Brustdrüsen zur Produktion von Muttermilch befähigt – vermehren sich zunächst die entsprechenden Zellen. Die hierfür notwendigen Proteine werden durch die Ribosomen hergestellt. Elementarer Baustein der Ribosomen ist die sogenannte ribosomale RNA, kurz rRNA. Werden mehr Proteine benötigt, steigt auch der Bedarf an rRNA – dementsprechend wird ihre Synthese im Zellkern hochgefahren. Am Ende der Laktogenese stellen die spezialisierten Zellen ihr Wachstum ein und drosseln die rRNA-Synthese wieder. Dieser Regulationsmechanismus passiert auf epigenetischer Ebene, das heißt, nicht etwa die DNA selbst verändert sich, sondern ihre Verpackung, wofür eine weitere Art von RNA zuständig ist.

„Wir haben herausgefunden, dass die sogenannte lange, nicht-codierende RNA PAPAS, die ich vor einigen Jahren entdeckt habe, auf die Verpackung der DNA einwirkt und die Produktion der rRNA verringert“, erklärt Dr. Holger Bierhoff, der das Projekt an der Universität Jena leitet. „Genau genommen beeinflusst sie den Zugriff auf die aktiven Bereiche der DNA und sorgt dafür, dass diese in RNA kopiert werden oder nicht. Wird viel rRNA benötigt, um viele Ribosomen – und damit viele Proteine – zu produzieren, wird die Herstellung von PAPAS verringert. Soll dieser Prozess gestoppt werden, dann wird PAPAS verstärkt gebildet.“

Außerdem fanden die Jenaer Expertinnen und Experten heraus, dass PAPAS nicht nur bei der Vermehrung der Zellen eine wichtige Rolle spielt, sondern auch bei der Spezialisierung. „Wir haben PAPAS durch Genmanipulation in der Zelle ausgeschaltet und konnten danach beobachten, dass die Entwicklung zu milchproduzierenden Zellen nicht mehr richtig funktionierte“, sagt Bierhoff.

Hohes PAPAS-Level – geringes Tumorwachstum

Auch in Krebszellen ist die rRNA-Synthese gesteigert, denn sie vermehren sich schnell und benötigen dafür viele Proteine – und entsprechend viele Ribosomen. „Deshalb haben wir uns gefragt, ob der von uns beobachtete Regulierungsmechanismus auch bei der Brustkrebsentstehung eine Rolle spielt. Die Antwort lautet eindeutig: ja“, erklärt der Jenaer Zellbiologe. „Als wir die PAPAS-Synthese verringerten und die Spezialisierung der Zellen ausschalteten, konnten wir beobachten, dass die Zellen zunehmend Eigenschaften von Krebszellen entwickelten.“ Im Gegensatz dazu zeigten die Forschenden sowohl in Zellkulturen als auch an Mäusen, dass ein hohes PAPAS-Level das Tumorwachstum – und auch die Ausbreitung von Metastasen – verringert.

Doch wie gelingt es der Krebszelle, die PAPAS-Produktion abzuschalten und somit die rRNA-Synthese anzukurbeln? „Auch dafür haben wir einen Mechanismus gefunden“, erklärt Holger Bierhoff. „Um PAPAS herzustellen braucht es ein molekulares Signal am Anfang des PAPAS-Gens. Diese Signalstruktur wird von bestimmten Proteinen reguliert, das heißt, diese Proteine können die Struktur abbauen oder blockieren. Wir haben beobachtet, dass die Produktion dieser Proteine in Brustkrebszellen besonders erhöht ist. Je aggressiver der Tumor, desto mehr von ihnen sind vorhanden.“

Jenaer Forschende entwickeln RNA-Therapie

Für Holger Bierhoff sind die Forschungsergebnisse in doppelter Hinsicht vielversprechend: „Zum einen sehen wir, dass PAPAS ein interessanter Marker sein kann, um die Aggressivität eines Brusttumors einzuschätzen. Diese Informationen lassen sich möglicherweise als diagnostisches Hilfsmittel nutzen“, sagt er. „Zum anderen arbeiten wir bereits daran, eine RNA-Therapie für die Krebsbehandlung zu entwickeln. Wir kennen den Mechanismus, wie PAPAS die rRNA Synthese reguliert, und wir wissen, welcher Bereich der RNA dafür notwendig ist. Die Idee ist nun, diesen künstlich herzustellen, verpackt in Nanopartikel in die Krebszellen einzubringen und so die Funktion der RNA PAPAS wiederherzustellen. So reduzieren wir die Synthese der rRNA, die der Krebs braucht, um zu wuchern.“ Dies sei ein ähnliches Verfahren wie bei den mRNA-Impfstoffen gegen die Covid-Erkrankung – nur dass man hier keine Protein-codierende, sondern eine regulatorische RNA verwende.


Wissenschaftliche Ansprechpartner:

Dr. Holger Bierhoff
Institut für Biochemie und Biophysik der Friedrich-Schiller-Universität Jena
Hans-Knöll-Str. 2, 07745 Jena
Tel.: 03641 / 949357
E-Mail: holger.bierhoff@uni-jena.de


Originalpublikation:

S. Ren, F. Bai, V. Schnell, C. Stanko, M. Ritsch, T. Schenk, E. Barth, M. Marz, B. Wang, X.-H. Pei, H. Bierhoff: „PAPAS promotes differentiation of mammary epithelial cells and suppresses breast carcinogenesis”, Cell Reports, 2024; https://doi.org/10.1016/j.celrep.2023.113644


Bilder

Dr. Holger Bierhoff von der Universität Jena untersucht in einem Labor die Proteine von Brustkrebszellen.

Dr. Holger Bierhoff von der Universität Jena untersucht in einem Labor die Proteine von Brustkrebsze
(Foto: Jens Meyer/Uni Jena)

Proteine von Brustkrebszellen werden an der Uni Jena mittels Gelelektrophorese aufgetrennt und analysiert; konkret zu sehen ist die Beladung eines Gels mit einem aus Zellen hergestellten Proteinextrakt, der mit einem blauen Farbstoff versetzt wurde.

Proteine von Brustkrebszellen werden an der Uni Jena mittels Gelelektrophorese aufgetrennt und analy
(Foto: Jens Meyer/Uni Jena)


Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Biologie, Chemie, Medizin
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch


 

Quelle: IDW