Weiteres Puzzleteil auf der Suche nach Dunkler Materie hinzugefügt

Weiteres Puzzleteil auf der Suche nach Dunkler Materie hinzugefügt


Teilen: 

25.10.2019 20:30

Weiteres Puzzleteil auf der Suche nach Dunkler Materie hinzugefügt

PRISMA⁺-Wissenschaftler berichten in Science Advances über neuestes Ergebnis aus dem CASPEr-Forschungsprogramm

Auf der Suche nach Dunkler Materie haben Wissenschaftler um Prof. Dr. Dmitry Budker ihre Reihe an Experimenten innerhalb des Projekts „Cosmic Axion Spin Precession Experiment“, kurz CASPEr, fortgesetzt. Das CASPEr-Team führt diese Experimente am Exzellenzcluster PRISMA⁺ der Johannes Gutenberg-Universität Mainz (JGU) und am Helmholtz-Institut Mainz (HIM) durch. „CASPEr“ ist ein internationales Forschungsprogramm, das mithilfe der Kernspinresonanz Dunkle Materie nachweisen und analysieren will.

Noch ist über die genaue Natur der Dunklen Materie wenig bekannt: Als einer der vielversprechenden Kandidaten gelten heute extrem leichte bosonische Teilchen, etwa sogenannte Axionen, Axion-like Particles oder auch Dunkle Photonen. „Diese können wir als klassisches Feld ansehen, das mit einer bestimmten Frequenz oszilliert. Wie groß diese – und demzufolge die Masse der Teilchen – ist, wissen wir aber nich“, so Budker. „Deshalb durchsuchen wir in unserem CASPEr-Forschungsprogramm systematisch unterschiedliche Frequenzbereiche nach Hinweisen auf Dunkle Materie.“

Das CASPEr Team entwickelt dazu unterschiedliche spezielle Methoden der Kernspin- oder NMR-Technik, über die jeweils ein bestimmter Frequenzbereich und damit ein bestimmter Masse-Bereich für Dunkle Materie Teilchen zugänglich ist. Generell nutzt die Kernspin- oder NMR-(für nuclear magnetic resonance) Technik die Tatsache, dass Kernspins auf Magnetfelder reagieren, die mit einer bestimmten „Resonanzfrequenz“ schwingen. Die Resonanzfrequenz wird über ein zweites, meist statisches Magnetfeld eingestellt. Die Grundannahme des CASPEr Forschungsprogramms: Auch ein Dunkle Materie Feld beeinflusst die Kernspins der untersuchten Probe in dieser Weise. Während sich die Erde durch dieses Feld bewegt, verhalten sich die Kernspins genau wie in einem oszillierenden magnetischen Feld. Das Ergebnis ist ein durch Dunkle Materie induziertes NMR-Spektrum.

In der aktuellen Arbeit verwenden Erstautor Antoine Garcon und seine Kollegen mit der so genannten ZULF (zero to ultra low field) NMR Methode eine etwas exotischere Technik. „Die ZULF-NMR bietet ein System, bei dem Kernspins stärker miteinander interagieren als mit einem externen Magnetfeld“, sagt der korrespondierende Autor Dr. John W. Blanchard. „Um die Spins empfindlich auf Dunkle Materie zu machen, muss nur ein sehr kleines Magnetfeld von außen angelegt werden, welches viel einfacher zu stabilisieren ist.“ Darüber hinaus werteten die Forscher erstmals ZULF-NMR-Spektren von ¹³C-Ameisensäure im Hinblick auf sogenannte Seitenbänder aus, die durch ein oszillierendes Dunkle Materie Feld hervorgerufen werden könnten.

Die spezielle Seitenband-Analyse ermöglicht den Forschern, einen neuen Frequenzbereich nach Hinweisen auf Dunkle Materie abzusuchen – auch in diesem Bereich konnte die Gruppe um Dmitry Budker keinen Einfluss von Dunkler Materie nachweisen, wie sie in der aktuellen Ausgabe von „Science Advances“ berichten. Die Ergebnisse des aktuellen Experiments liefern so allerdings ein weiteres Puzzleteil im Dunkle Materie Rätsel und ergänzen die Ergebnisse aus dem CASPEr Forschungsprogramm vom Juni: Hier haben die Forscher einen um mehrere Größenordnungen niedrigeren Frequenzbereich abgesucht und dabei eine andere spezielle NMR-Methode genutzt – die so genannte Komagnetometrie.

„Wie ein Puzzle fügen wir im Rahmen des CASPEr Forschungsprogramms verschiedene Bausteine zusammen, um den Suchbereich nach Dunkler Materie immer weiter einzuschränken“, so Dmitry Budker. John W. Blanchard ergänzt: „Das ist nur der erste Schritt – wir planen derzeit mehrere vielversprechende Verbesserungen, um unser Experiment noch empfindlicher zu machen.“


Wissenschaftliche Ansprechpartner:

Prof. Dr. Dmitry Budker
Quantum, Atomic and Neutron Physics (QUANTUM)
Institut für Physik und Exzellenzcluster PRISMA⁺
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-29630
E-Mail: budker@uni-mainz.de
https://budker.uni-mainz.de/


Originalpublikation:

Antoine Garcon, John W. Blanchard, Gary P. Centers, Nataniel L. Figueroa, Peter W. Graham,
Derek F. Jackson Kimball, Surjeet Rajendran, Alexander O. Sushkov, Yevgeny V. Stadnik, Arne Wickenbrock, Teng Wu, Dmitry Budker “Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance”; Science Advances
DOI: 10.1126/sciadv.aaz4539
https://advances.sciencemag.org/content/5/10/eaax4539


Merkmale dieser Pressemitteilung:
Journalisten
Physik / Astronomie
überregional
Forschungsergebnisse
Deutsch


Quelle: IDW