Wie ein expandierendes Universum erzeugt werden kann

Wenn man Raum und Zeit erhitzt, kann ein expandierendes Universum entstehen – ganz ohne Urknall. Diesen Phasenübergang zwischen einem leeren Raum und einem expandierenden Universum, das Masse enthält, konnte ein Forschungsteam nun berechnen. Dahinter liegt ein bemerkenswerter Zusammenhang zwischen Quantenfeldtheorie und Einsteins Relativitätstheorie.

Kochen mit Raum und Zeit

Aus dem Alltag kennen wir Phasenübergänge nur von Stoffen, die zwischen festem, flüssigem und gasförmigem Zustand wechseln. Allerdings können auch Raum und Zeit selbst solche Übergänge durchmachen, wie die Physiker Steven Hawking und Don Page schon 1983 zeigten. Sie berechneten, dass aus leerem Raum bei einer bestimmten Temperatur plötzlich ein Schwarzes Loch werden kann.

Lässt sich bei einem ähnlichen Prozess aber auch ein ganzes Universum erzeugen, das sich kontinuierlich ausdehnt, so wie unseres? Diese Frage stellte sich Daniel Grumiller vom Institut für Theoretische Physik der TU Wien gemeinsam mit Kollegen aus Harvard, dem Massachusetts Institute of Technology (MIT) und der Universität Edinburgh. Das Ergebnis: Tatsächlich scheint es eine kritische Temperatur zu geben, bei der aus einem völlig leeren, flachen Raum ein expandierendes Universum mit Masse wird. „Die leere Raumzeit beginnt gewissermaßen zu kochen, es bilden sich Blasen, eine von ihnen expandiert und nimmt schließlich die gesamte Raumzeit ein“, erklärt Daniel Grumiller.

 Daniel Grumiller erhitzt die Raumzeit - zumindest am Papier. Foto: TU Wien
Daniel Grumiller erhitzt die Raumzeit – zumindest am Papier. Foto: TU Wien

Das Universum muss dabei rotieren – das Kochrezept für ein expandierendes Universum lautet also: Erhitzen und umrühren. Diese Rotation kann allerdings beliebig gering sein. Bei den Berechnungen wurden vorerst nur zwei Raumdimensionen berücksichtigt. „Es gibt aber nichts, was dagegen spricht, dass es in drei Raumdimensionen genauso ist“, meint Grumiller.

Das Phasenübergangs-Modell ist nicht als Konkurrenz zur Urknalltheorie gedacht. „In der Kosmologie weiß man heute sehr viel über das frühe Universum – das zweifeln wir nicht an”, sagt Grumiller. “Aber für uns ist die Frage entscheidend, welche Phasenübergänge in Raum und Zeit möglich sind und wie die mathematische Struktur der Raumzeit beschrieben werden kann“.

Auf der Suche nach der Struktur des Universums

Die Theorie ist die logische Fortsetzung  einer 1997 aufgestellten Vermutung, der sogenannten „AdS-CFT-Korrespondenz“, die seither die Forschung an den fundamentalen Fragen der Physik stark beeinflusst hat: Sie beschreibt einen merkwürdigen Zusammenhang zwischen Gravitationstheorien und Quantenfeldthorien – zwei Bereiche, die auf den ersten Blick gar nichts miteinander zu tun haben. In bestimmten Grenzfällen lassen sich Aussagen der Quantenfeldtheorie in Aussagen von Gravitationstheorien überführen und umgekehrt.  Zwei ganz unterschiedliche physikalische Gebiete werden so in Verbindung gebracht, aber es mangelte bisher an konkreten Modellen, die diesen Zusammenhang belegten.

Letztes Jahr wurde von Daniel Grumiller und Kollegen erstmals so ein Modell aufgestellt (der Einfachheit halber in bloß zwei Raumdimensionen). Das führte schließlich zur aktuellen Fragestellung: Dass es in den Quantenfeldtheorien einen Phasenübergang gibt, wusste man. Doch das bedeutete, dass es aus Konsistenzgründen auch auf der Gravitatations-Seite einen Phasenübergang geben muss.

„Das war zunächst ein Rätsel für uns“, sagt Daniel Grumiller. „Das würde einen Phasenübergang zwischen einer leeren Raumzeit und einem expandierenden Universum bedeuten, und das erschien uns zunächst äußerst unwahrscheinlich.“ Die Rechenergebnisse zeigten dann aber, dass genau diesen Übergang tatsächlich gibt. “Wir beginnen erst, diese Zusammenhänge zu verstehen“, meint Daniel Grumiller. Welche Erkenntnisse über unser eigenes Universum wir dadurch ableiten können, ist heute noch gar nicht absehbar. (Quelle: idw)

Buchtipps: