Max-Planck-Forscher entwickeln “ultimativen Zellsortierer”



Teilen: 

25.05.2020 17:00

Max-Planck-Forscher entwickeln “ultimativen Zellsortierer”

Durch eine Kombination aus Bildgebung von verformten Zellen und künstlicher Intelligenz ist es Forscher*innen am Max-Planck-Institut für die Physik des Lichts und dem Max-Planck-Zentrum für Physik und Medizin in Erlangen gelungen, eine Hochgeschwindigkeitsmethode zur Identifikation und Sortierung von Zellen zu entwickeln, die ohne eine externe Markierung der Zellen auskommt.

In Medizin und Biologie besteht ein großes Interesse an effizienten und kostengünstigen Methoden zur Identifizierung und Trennung verschiedener Zelltypen, beispielsweise für die medizinische Diagnostik oder für regenerative Therapien mithilfe von Stammzellen. Bislang wird dazu meist die sogenannte Durchflusszytometrie verwendet, bei der Zellen mit fluoreszierenden Antikörpern markiert und beim Durchfluss durch einen Kanal identifiziert werden. Diese Methode hat jedoch ihre Schwachstellen: Sie ist nicht nur relativ teuer und zeitintensiv, sondern auch die Antikörper selbst sind problematisch. Da sie körperfremd sind, können sie die Eigenschaften der Zellen, an die sie andocken, verändern und etwa bei einer Injektion in den Körper Schwierigkeiten bereiten. Auch ist die Identifikation von Zellen bei der Durchflusszytometrie nicht immer fehlerfrei.

Als zusätzliches Unterscheidungsmerkmal lassen sich deshalb physikalische Eigenschaften der Zellen nutzen: Aufgrund des Zytoskeletts, eines feinen Netzwerks von Filamenten in der Zellstruktur, besitzt jede Zellart charakteristische mechanische Eigenschaften wie etwa Form, Größe und insbesondere die Verformbarkeit. Das Team um Jochen Guck, Direktor am Max-Planck-Institut für die Physik des Lichts, hat darauf aufbauend vor einigen Jahren eine neue Technik entwickelt: Die Echtzeit-Verformungszytometrie (real-time deformability cytometry, kurz: RT-DC). Dabei wird eine Zelllösung durch einen transparenten Kanal von weniger als dem Durchmesser eines Haares gedrückt. Die Zellen werden dabei unbeschadet in die Länge gezogen und der Grad der Verformung lässt eine Zuordnung zu einem bestimmten Zelltyp zu.

Literature advertisement

Plötzlich gesund

Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‘Wissenschaft’, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.

Hier geht es weiter …

Die Zuordnung der Zelltypen erfolgt mit Hilfe der Aufnahmen einer Highspeed-Kamera, die die verformten Zellen im Kanal mit 2.000 bis 4.000 Bildern pro Sekunde aufnimmt. Das ist vergleichbar z.B. mit Videos, in denen das Platzen eines Luftballons in Zeitlupe beobachtet werden kann. Die Bilder werden mit einer speziellen Software ausgewertet, die bestimmte, vorher definierte Zelleigenschaften in Echtzeit auswertet. Diese Echtzeit-Auswertung, bei der jede Zelle sofort in dem Moment, in dem sie durch den Kanal fließt, identifiziert wird, ist jetzt die Basis für die erste Neuheit. Denn sie ermöglicht es, die Zellen nach der Identifizierung gezielt in einen Sammelkanal abzulenken. So können Zellen jetzt erstmals auch aufgrund ihrer Verformbarkeit sortiert werden.

Eine weitere Neuheit liegt darin, RT-DC mit künstlicher Intelligenz zu kombinieren: Hunderttausende Bilder von einzelnen Zellen sind eine ideale Basis, um ein neuronales Netzwerk darauf zu trainieren, verschiedene Zelltypen zu erkennen. In bisher nicht erreichter Geschwindigkeit kann der KI-Algorithmus dann Zellen identifizieren und ebenfalls in Echtzeit nach Wunsch sortieren.

Guck vergleicht diesen Ansatz mit der Stärke von Google: “Wenn Katzenbesitzer im Internet Millionen von Katzenfotos posten und dazu etwas schreiben wie ‘meine Katze’, wird der Suchalgorithmus anhand des Bilds und des Kommentars darauf trainiert, die Eigenschaften zu erkennen, die eine Katze ausmachen. Wenn dann jemand nach ‘Katze’ googelt, kann der Algorithmus durch das Training eines neuronalen Netzwerks die Bilder mit Katzeneigenschaften identifizieren und aus allen anderen Haustierfotos herausfiltern.”

Ähnlich verhält es sich mit der neuen Methode der Forschergruppe um Guck: Da die Fluoreszenzmoleküle so ausgewählt werden, dass sie nur an bestimmte Zellen andocken, entspricht das Aufleuchten eines Fluoreszenzmoleküls quasi dem Kommentar “meine Katze”. Das Foto der Zelle mit all ihren Eigenschaften entspricht dem Katzenbild. So lernt das neuronale Netzwerk, dass ein Aufleuchten mit einem bestimmten Zelltyp verbunden ist und kann eine Verbindung zum dazugehörigen Foto der Zelle herstellen. Wurde das neuronale Netzwerk durch den Fluoreszenzmarker ausreichend auf einen Zelltyp trainiert, kann der Marker schließlich ganz weggelassen werden und der Zelltyp wird auch ohne Fluoreszenz erkannt, genauso wie der Google-Algorithmus gelernt hat, unabhängig von Kommentaren Katzen zu erkennen.

Diese neue Methode hat viele Vorteile: So fällt nach dem Training des neuronalen Netzwerks die zeit- und kostenintensive Floureszenz-Markierung zur Identifizierung weg und die Zellen werden nicht mehr durch körperfremde Moleküle verändert. Dann reichen die von der Highspeed-Kamera geschossenen Bilder aus, um die Zellen zu identifizieren. Dieses Vorgehen ist sehr zellschonend, verändert die Zelleigenschaften nicht und kann bis zu 1.000 Zellen pro Sekunde analysieren. Die Anwendung von künstlicher Intelligenz auf RT-DC bietet außerdem die Erleichterung, dass die Parameter, anhand derer die Zellerkennung oder eine Zellveränderung durch beispielsweise Krankheiten festgemacht werden kann, nicht vorher definiert werden müssen. Man kann die KI selbst entscheiden lassen, anhand welcher Bildinformation Zellen am besten unterschieden werden können.

Guck nennt die neu entwickelte Methode, die nun in der prestigeträchtigen Fachzeitschrift Nature Methods veröffentlicht wurde, einen “ultimativen Zellsortierer”: Sie vereint die Genauigkeit der etablierten Erkennung über Fluoreszenz mit der Sensitivität der inhärenten mechanischen Zelleigenschaften und hat das Potential, als zukünftige Standardmethode Einzug in alle biologischen und biomedizinschen Labore zu halten. In Zukunft lassen sich damit beispielsweise schnell, unbeschadet und unverändert blutbildende Stammzellen aus einer Probe gewinnen, die dann einem Chemotherapie-Patienten zum Wiederaufbau des Immunsystems injiziert werden können oder besonders geeignete Photorezeptorzellen aus humanen Organoiden heraussortieren, um damit durch Transplantation manche Formen der Blindheit abzuwenden.


Wissenschaftliche Ansprechpartner:

Prof. Dr. Jochen Guck, jochen.guck@mpl.mpg.de


Originalpublikation:

Ahmad Ahsan Nawaz, Marta Urbanska, Maik Herbig, Martin Nötzel, Martin Kräter, Philipp Rosendahl, Christoph Herold, Nicole Toepfner, Markéta Kubánková, Ruchi Goswami, Shada Abuhattum, Felix Reichel, Paul Müller, Anna Taubenberger, Salvatore Girardo, Angela Jacobi, Jochen Guck, “Intelligent image-based deformation-assisted cell sorting with molecular specificity”, Nature Methods, https://doi.org/10.1038/s41592-020-0831-y


Merkmale dieser Pressemitteilung:
Journalisten, Studierende, Wissenschaftler
Biologie, Informationstechnik, Medizin, Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch


Quelle: IDW