Superresolution-Live-Cell-Imaging gewährt unerwartete Einblicke in den dynamischen Aufbau von Mitochondrien



Teilen: 

18.02.2020 12:04

Superresolution-Live-Cell-Imaging gewährt unerwartete Einblicke in den dynamischen Aufbau von Mitochondrien

Mitochondrien sind als Kraftwerke und Energiespeicher essentielle Bestandteile von nahezu allen Zellen in Pflanzen, Pilzen und Tieren. Bisher nahm man an, dass diese Funktionen einem statischen Aufbau der mitochondrialen Membranen zu Grunde liegen. Forscher der Heinrich-Heine-Universität Düsseldorf (HHU) und der University of California Los Angeles (UCLA) und haben nun herausgefunden, dass die Innenmembranen der Mitochondrien keineswegs statisch sind, sondern ihre Struktur ständig, und zwar alle paar Sekunden, in lebenden Zellen ändern. Dieser dynamische Anpassungsprozess erhöht noch einmal die Leistungsfähigkeit unserer zellulären Kraftwerke.

„Diese Erkenntnis ändert nach unserer Einschätzung grundsätzlich die Sichtweise, wie unsere zellulären Kraftwerke funktionieren und wird vermutlich die Lehrbücher verändern“, sagt Prof. Dr. Andreas Reichert, Institut für Biochemie und Molekularbiologie I der HHU. Die Ergebnisse sind aktuell in EMBO Reports beschrieben.

Mitochondrien sind extrem wichtige Bestandteile von Zellen, da sie unter anderem für die geregelte Umwandlung von Energie aus der Nahrung in chemische Energie in Form von Adenosintriphosphat (ATP) notwendig sind. ATP ist die Energiewährung der Zellen und pro Tag produziert und verbraucht ein erwachsener Mensch circa 75 Kilogramm ATP. Dabei wird ein Molekül ATP pro Tag circa 20.000-mal produziert und anschließend wieder zur Energieverwertung verbraucht. Diese immense Syntheseleistung erfolgt in der Innenmembran der Mitochondrien, die zahlreiche Einfaltungen aufweist. Diese nennen sich Cristae und man ging bisher davon aus, dass je nach Zelltyp ein bestimmter statischer Aufbau der Cristae die Synthese von ATP gewährleistet. Ob und inwieweit Cristae-Membranen ihre Struktur dynamisch in lebenden Zellen anpassen oder ändern können und welche Proteine dafür notwendig sind, war bisher unbekannt.

Literature advertisement

Plötzlich gesund

Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‘Wissenschaft’, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.

Hier geht es weiter …

Dem Forscherteam von Prof. Dr. Andreas Reichert mit Dr. Arun Kondadi und Dr. Ruchika Anand vom Institut für Biochemie und Molekularbiologie I der HHU in Kooperation mit dem Forschungsteam um Prof. Dr. Orian Shirihai und Prof. Dr. Marc Liesa von der UCLA (USA) gelang es erstmals zu zeigen, dass Cristae-Membranen in lebenden Zellen kontinuierlich, im Rahmen von Sekunden, ihre Struktur dynamisch innerhalb der Mitochondrien ändern. Sie konnten zudem nachweisen, dass dafür ein erst kürzlich identifizierter Proteinkomplex, der MICOS-Komplex, notwendig ist. Fehlfunktionen des MICOS-Komplexes können zu diversen schweren Erkrankungen führen, wie Morbus Parkinson und einer Form der mitochondrialen Enzephalopathie mit Leberschädigung. Nach der Identifikation der ersten Proteinkomponente dieses Komplexes (Fcj1/Mic60) vor circa zehn Jahren durch Prof. Andreas Reichert und seine Arbeitsgruppe, ist dies ein weiterer wichtiger Baustein die Funktion des MICOS-Komplexes besser zu verstehen.

„Unsere nun publizierten Beobachtungen führen zu dem Modell, dass Cristae nach Membranabschnürungen auch kurzzeitig als isolierte Vesikel innerhalb von Mitochondrien existieren und dann wieder mit der Innenmembran refusionieren können. Dies erlaubt eine optimale und extrem schnelle Anpassung an energetische Anforderungen in einer Zelle“, sagt Prof. Andreas Reichert.


Wissenschaftliche Ansprechpartner:

Prof. Dr. Andreas Reichert
Institute of Biochemistry and Molecular Biology I
University Hospital Düsseldorf
Heinrich-Heine University Düsseldorf
Tel.: +4921181-12707, -12717
reichert@hhu.de


Originalpublikation:

EMBO Reports, Kondadi et al., 2020, https://www.embopress.org/doi/10.15252/embr.201949776


Weitere Informationen:

http://vgl, auch: „Mitochondrien funktionieren ähnlich wie moderne Akkus in Elektroautos“, https://www.uni-duesseldorf.de/home/startseite/news-detailansicht-inkl-gb/articl…


Anhang

attachment icon Animationsvideo Animationsvideo “Cristae-Membranen passen ihre Struktur dynamisch in lebenden Zellen an”

Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Biologie, Medizin
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch


Quelle: IDW