3D-Druck mit Ultraschall



Teilen: 

09.02.2023 09:00

Literature advertisement

Plötzlich gesund

Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‘Wissenschaft’, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.

Hier geht es weiter …

3D-Druck mit Ultraschall

Wissenschaftler der Gruppe „Micro, Nano and Molecular Systems“ am Max-Planck-Institut für medizinische Forschung und des Institute for Molecular Systems Engineering and Advanced Materials der Universität Heidelberg haben eine neue Technologie entwickelt, um Materie in 3D zu drucken. Sie nutzen dabei Klänge, bzw. Schallwellen, um Druckfelder zu erzeugen. Innerhalb dieser Schallfelder können zum Beispiel Feststoffpartikel oder biologische Zellen zu ausgewählten Formen zusammengesetzt werden. Die Erkenntnisse ebnen den Weg für neuartige 3D-Zellkulturtechniken mit hoher Relevanz für biomedizinische Techniken. Die Ergebnisse der Studie wurden am 8. Februar in Science Advances veröffentlicht.

3D-Druck ermöglicht die Herstellung komplexer Teile aus verschiedenen, sogar biologischen Materialien. Herkömmlicher 3D-Druck kann ein langsamer Prozess sein, bei dem Objekte schichtweise aufgebaut werden. Forscher*innen in Heidelberg und Tübingen zeigen nun, wie man aus kleineren Bausteinen in nur einem Schritt ein 3D-Objekt formt.

„Mit zielgerichtetem und geformten Ultraschall konnten wir kleinste Partikel in einem einzigen Schritt zu einem dreidimensionalen Objekt zusammenfügen“, sagt Kai Melde, Postdoc in der Gruppe und Erstautor der Studie. „Das kann für das sogenannte Bioprinting sehr nützlich sein. Die dort verwendeten Zellen sind besonders empfindlich gegenüber Umwelteinflüssen und Ultraschall ist eine sanfte Methode“, ergänzt Peer Fischer, Professor an der Universität Heidelberg.

Schallwellen üben Kräfte auf Materie aus – eine Tatsache, die jeder Konzertbesucher kennt, der die Druckwellen eines Lautsprechers erlebt. Mit hochfrequentem Ultraschall, der für das menschliche Ohr nicht hörbar ist, können die Wellenlängen unter einen Millimeter in den mikroskopischen Bereich verschoben werden, mit dem Forschende sehr kleine Bausteine wie biologische Zellen manipulieren.

In früheren Studien zeigten Peer Fischer und Kolleg*innen, wie Ultraschall mithilfe von akustischen Hologrammen – 3D-gedruckten Platten, die ein bestimmtes Schallfeld kodieren sollen – erzeugt werden kann. Sie demonstrierten, dass diese Schallfelder verwendet werden können, um Materialien zu zweidimensionalen Mustern zusammenzusetzen.

Mit ihrer neuen Studie konnte das Team die Idee noch einen Schritt weiterbringen. In den Schallfeldern fangen sie frei im Wasser schwebende Partikel und Zellen ein und setzen sie zu dreidimensionalen Formen zusammen. Darüber hinaus funktioniert die neue Methode mit einer Vielzahl von Materialien, darunter Glas- oder Hydrogelperlen und biologische Zellen. Erstautor Kai Melde sagt, dass „die entscheidende Idee war, mehrere akustische Hologramme zusammen zu verwenden und so ein Schallfeld zu bilden, das die Partikel einfangen kann“. Heiner Kremer, der den Algorithmus zur Optimierung der Hologrammfelder geschrieben hat, ergänzt: „Die Digitalisierung eines ganzen 3D-Objekts in Ultraschall-Hologrammfelder ist sehr rechenintensiv und erforderte neue Rechenroutinen.“

Die Wissenschaftler*innen glauben, dass ihre Technologie für die Bildung von Zellkulturen und Geweben in 3D einen großen Fortschritt bedeutet. Der Vorteil des Ultraschalls besteht darin, dass er schonend für Zellen ist und tief in das Gewebe eindringen kann. So kann die neue Methode verwendet werden, um Zellen ohne Schaden auch aus der Ferne zu manipulieren.


Wissenschaftliche Ansprechpartner:

Kai Melde (kai.melde@mr.mpg.de)


Originalpublikation:

Compact Holographic Sound Fields Enable Rapid One-step Assembly of Matter in 3D” K. Melde, H. Kremer, M Shi, S. Seneca, C. Frey, I. Platzman, C. Degel, D. Schmitt, B. Schölkopf, P. Fischer. Science Advances 9(6) 2023
DOI: 10.1126/sciadv.adf6182


Bilder

Ultraschall bildet ein Schallfeld in dem Partikel zu einem Objekt geformt wrden

Ultraschall bildet ein Schallfeld in dem Partikel zu einem Objekt geformt wrden

Kai Melde, MPI für medizinische Forschung


Merkmale dieser Pressemitteilung:
Journalisten
Biologie, Chemie, Medizin, Physik / Astronomie
überregional
Forschungsergebnisse
Deutsch


 

Quelle: IDW