21.04.2022 08:00
Prognosen zur Spitalauslastung dank Wetterdaten
Ein vom Schweizerischen Nationalfonds gefördertes Forschungsteam hat ein mathematisches Frühwarnsystem für Grippewellen entwickelt, das Spitäler nutzen können. Die Basis dazu bilden Wetterdaten.
Plötzlich gesund
Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‘Wissenschaft’, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.
Wenn zu viele Menschen gleichzeitig erkranken, kann dies zur Überlastung von Spitälern führen, wie es während der Covid-19-Pandemie teilweise der Fall war. Auch bei Grippeerkrankungen besteht dieses Problem. Nun haben vom Schweizerischen Nationalfonds (SNF) geförderte Forschende ein mathematisches Modell entwickelt, das drohende Engpässe in Spitälern wegen Wellen von Grippefällen anhand von Wetterdaten frühzeitig erkennt. Die Arbeiten wurden im Journal of the Royal Statistical Society (*) veröffentlicht.
Die Grippe ist ein saisonales Virus und tritt in unseren Breitengraden vor allem im Winter auf. Das Forschungsteam hatte deshalb die Idee, Wetterdaten wie Niederschlag, Luftfeuchtigkeit, Temperatur und Sonnenstunden mit den täglichen Grippefällen zu vergleichen, die im Lauf von drei Jahren am Universitätsspital Lausanne (CHUV) behandelt wurden.
Extreme sind relevanter als der Durchschnitt
Das Team konzentrierte sich dabei nicht wie üblich auf die durchschnittlichen Grippefallzahlen pro Tag. Sein Interesse galt stattdessen den Extremwerten – und das ist neu am Ansatz. Zu diesen Spitzenzeiten besteht die Gefahr von Engpässen in Spitälern, falls die personellen Ressourcen nicht vorher aufgestockt werden. Daraus resultierte ein Modell, das aufgrund von Wetterdaten das Risiko einer Überlastung drei Tage im Voraus erkennt – so lang ist die Inkubationszeit bei der Grippe. «Anstatt den Spitälern einen Durchschnittswert für die zu erwartenden Fälle anzugeben, können wir ihnen mitteilen, mit welcher Wahrscheinlichkeit eine Fallzahl erreicht wird, die ihre Kapazitäten übersteigen würde, was relevanter ist», erklärt Valérie Chavez, Statistikerin an der Universität Lausanne und Co-Autorin der Studie.
Ein Warnsignal
Wenn die Spitalverantwortlichen die Entwicklung dieser Wahrscheinlichkeit jeweils ab Herbst verfolgen, könnten sie die Spitzenbelastung durch Grippefälle und daraus resultierende Engpässe frühzeitig erkennen. Konkret gibt das Modell an, welche Fallzahlen mit einer Wahrscheinlichkeit von einem, fünf und zehn Prozent überschritten werden könnten. Ausserdem prognostiziert es die Anzahl Grippefälle, die innert 10 oder 30 Tagen zu erwarten sein könnten. Wenn sich diese Werte nach oben bewegen, deutet dies darauf hin, dass eine Grippe-Epidemie auf einen Höhepunkt zusteuert. «Für die Spitäler ist das ein Warnsignal», erklärt die Forscherin.
Das Modell eignet sich auch für andere saisonale Viren, insbesondere Coronaviren und das Respiratory Syncytial Virus (RSV), das Atemwegsinfektionen bei Kleinkindern auslösen kann. Derzeit sind die Risikoeinschätzungen allerdings noch mit Unsicherheiten behaftet, weil die Daten des CHUV erst für drei Jahre ausgewertet wurden. Aufgrund fehlender Daten ist es auch noch nicht für Prognosen zu SARS-CoV-2 anwendbar. Stattdessen arbeitet das Forschungsteam nun bereits an Modellen, die neben den Wetterdaten auch die Ansteckungsprozesse der Viren beiziehen, um noch präzisere Prognosen zu machen.
————————–
Extreme beobachten und Risiken beziffern
Die Extremwerttheorie ist ein Teilgebiet der Statistik, bei dem in einem Datensatz die extrem grossen oder extrem kleinen Werte betrachtet werden. Indem die Wahrscheinlichkeit von Extremereignissen geschätzt wird, lassen sich Risiken beziffern. Die Theorie ist bereits bekannt aus der Hydrologie, wenn berechnet wird, wie hoch Dämme gegen Hochwasser sein müssen. «Es braucht unterschiedlich hohe Dämme, je nachdem, ob sie vor Überschwemmungen, die alle zehn Jahre auftreten, oder vor einem Jahrhunderthochwasser schützen sollen. Für einen Schutz auf unbeschränkte Zeit würde analog eine unendliche Höhe resultieren», veranschaulicht Valérie Chavez. Nützlich ist diese Statistiktheorie zum Beispiel auch in der Finanzwelt, wenn die Gefahr für einen Börsencrash geschätzt werden soll, oder für klimatische Ereignisse wie Hitzewellen oder schmelzende Gletscher.
Wie ist das Forschungsteam auf die Idee gekommen, die Extremwerttheorie in diesem Projekt anzuwenden? «In unserem Modell behandeln wir hohe Grippefallzahlen als seltene Ereignisse mit starken Auswirkungen. Das ist genau der Fokus der Extremwerttheorie. Modelle, die mit Durchschnittswerten arbeiten, basieren auf den zentralen Werten zur Verteilung und eignen sich nicht zur Quantifizierung von Risiken», erklärt Valérie Chavez.
—————————
—————————
Unterstützung der Forschung in allen Disziplinen
Diese Forschungsarbeit wurde vom SNF mit dem Instrument der «Projektförderung» unterstützt. Nach einem Auswahlverfahren können Forschende mit diesen finanziellen Beiträgen Vorhaben zu selbst gewählten Themen und Forschungszielen eigenverantwortlich durchführen.
————————–
Der Text dieser Medienmitteilung und weitere Informationen stehen auf der Webseite des Schweizerischen Nationalfonds zur Verfügung.
Wissenschaftliche Ansprechpartner:
Valérie Chavez
Université de Lausanne
Quartier UNIL-Chamberonne
Bâtiment Anthropole
1015 Lausanne
Tel.: +41 21 692 34 67
E-Mail: Valerie.Chavez@unil.ch
Originalpublikation:
(*) S. Ranjbar, E. Cantoni, V. Chavez-Demoulin, G. Marra, R. Radice, K. Jaton-Ogay and al: Modelling the Extremes of Seasonal Viruses and Hospital Congestion: The Example of Flu in a Swiss Hospital. Journal of the Royal Statistical Society (2022). https://doi.org/10.1111/rssc.12559
Weitere Informationen:
https://www.snf.ch/de/0IH1mHlnIfp9lnus/news/prognosen-zur-spitalauslastung-dank-…
Merkmale dieser Pressemitteilung:
Journalisten
Ernährung / Gesundheit / Pflege, Medizin
überregional
Forschungsergebnisse
Deutsch