20.11.2019 11:41
3D-gedruckte Optik
Terahertzwellen gelten als Hoffnungsträger für neue Technologien in der Medizin, Kommunikation und der Sicherheitstechnik. Grundlage dafür sind allerdings neue optische Komponenten. Forscherinnen und Forscher der Technischen Universität Braunschweig haben sogenannte Beugungsgitter hergestellt – im 3D-Druckverfahren. Ihre Messungen haben gezeigt, dass die Gitter eine gezielte Manipulation der hochfrequenten Strahlung ermöglichen. Optische Komponenten für Terahertzwellen können demnach schnell und zuverlässig gefertigt und in neuen Anwendungsfällen erforscht werden. Die Ergebnisse der Untersuchung sind im Journal „IEEE Transactions on Applied Superconductivity“ erschienen.
Die Beugungsgitter sind fünf mal fünf Zentimeter groß, ihre Fläche besteht aus sich periodisch wiederholenden Strukturen. Um die Beugung der Strahlung analysieren zu können, ist eine präzise Fertigung der Gitter Voraussetzung. Am Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik (EMG) der TU Braunschweig unter Leitung von Professor Meinhard Schilling kommt deshalb ein Stereolithografie-Drucker zum Einsatz. Nach dem Druck werden die Beugungsgitter mit einer dünnen Goldschicht versehen: „Das erhöht den Reflexionsgrad der Strukturen“, sagt Dr. Benedikt Hampel, der sich mit der Untersuchung von optischen Eigenschaften von 3D-gedruckten Strukturen beschäftigt. Bei der Stereolithografie werden flüssige lichtempfindliche Harze mit einem Laser verfestigt. Dies kann mit extrem hoher Genauigkeit im Mikrometerbereich erfolgen. Auf diese Weise lassen sich sehr präzise Objekte aus Kunststoffen – schnell und reproduzierbar – fertigen.
Zur Verbesserung der Qualität wird die Oberfläche der 3D-gedruckten Beugungsgitter genau unter die Lupe genommen: Wissenschaftlerinnen und Wissenschaftler am EMG untersuchen ihre Rauigkeit und messen die gebeugte Strahlung. Hierfür steht ein am Institut entwickeltes Terahertz-Rastermikroskop zur Verfügung, das die Strahlenverteilung dreidimensional erfasst und messbar macht.
Plötzlich gesund
Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‘Wissenschaft’, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.
Terahertz-Strahlung
Terahertz-Strahlung ist eine elektromagnetische Strahlung, deren Frequenz sich oberhalb von Mikrowellen und unterhalb von sichtbarem Licht befindet. Dieser Frequenzbereich wurde in der Vergangenheit aufgrund von fehlenden Quellen und Sensoren nur selten für technische Anwendungen genutzt. Die vergleichsweise hohen Frequenzen versprechen spannende Anwendungsszenarien beispielsweise als schnelle Übertragungstechnik im Mobilfunk und in der Medizin die Analyse von Gewebe und Atemluft. Zum Einsatz kommt die hochfrequente Strahlung zum Beispiel in Form von Detektoren am Flughafen: Die für den Menschen ungefährliche Strahlung erreicht eine gute räumliche Auflösung und kann viele nicht-metallische Materialien durchdringen.
Das Institut
Das Institut beschäftigt sich seit vielen Jahren mit dem Entwurf und der Verbesserung von 3D-Druckern. Seit 2016 unterstützt das EMG die Firma Fabmaker GmbH bei der Ausgründung, um diese Technologie auch in Schulen verfügbar zu machen. Seit dem Sommersemester 2019 bietet das Institut eine Lehrveranstaltung zum Thema Additive Fertigung an.
Die weiteren Entwicklungen der optischen Komponenten werden im Nanometrologie-Forschungszentrum LENA (Laboratory for Emerging Nanometrology) und im Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik an der TU Braunschweig gemeinsam mit der Physikalisch-Technischen Bundesanstalt (PTB) und im Rahmen des Exzellenzclusters „Quantum Frontiers“ vorangetrieben.
Wissenschaftliche Ansprechpartner:
Prof. Meinhard Schilling
Technische Universität Braunschweig
Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik
Hans-Sommer-Straße 66
38106 Braunschweig
Tel.: 0531 391-3866
E-Mail: m.schilling@tu-bs.de
www.emg.tu-bs.de
Dr. Benedikt Hampel
Technische Universität Braunschweig
Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik
Hans-Sommer-Straße 66
38106 Braunschweig
Tel.: 0531 391-3855
E-Mail: b.hampel@tu-bs.de
www.emg.tu-bs.de
Originalpublikation:
B. Hampel et al., “Josephson Cantilevers for THz Microscopy of Additive Manufactured Diffractive Optical Components”, IEEE Trans. Appl. Supercond., Vol. 29, Nr. 5, 2019
Weitere Informationen:
https://magazin.tu-braunschweig.de/pi-post/sprit-sparen-auf-dem-acker/
https://magazin.tu-braunschweig.de/dossiers/quantumfrontiers/
Merkmale dieser Pressemitteilung:
Journalisten, Wirtschaftsvertreter, Wissenschaftler
Elektrotechnik, Informationstechnik, Medizin
überregional
Forschungsergebnisse
Deutsch