14.08.2019 11:52
KI zur Vorhersage von Proteinstruktur entwickelt
Proteine sind Hochleistungsbiomaschinen: Eiweiße finden sich in jeder Zelle und spielen im menschlichen Körper eine wichtige Rolle, etwa bei der Blutgerinnung oder als Hauptbestandteil von Haaren oder Muskeln. Welche Funktion die molekularen Werkzeuge jeweils erfüllen, lässt sich an ihrer Gestalt erkennen. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) haben eine neue Methode entwickelt, diese Proteinstruktur mittels Künstlicher Intelligenz vorherzusagen.
Proteine können mit anderen Molekülen durch Eindringen oder Umschließen interagieren, je nach Form. Diese lässt sich – anders als beim Blick in den heimischen Werkzeugkasten – nicht ohne weiteres feststellen, sondern nur mit teuren und aufwendigen Experimenten. Forscherinnen und Forscher des Steinbuch Centre for Computing (SCC), dem Rechenzentrum des KIT, haben dafür zunächst Datenbanken für Proteinsequenzen durchkämmt und gleiche Proteine unterschiedlicher Spezies verglichen. „Hämoglobin, das in unserem Körper für den Sauerstofftransport zuständig ist, gibt es auch beim Insekt, bei der Feldmaus und beim Schimpansen“, erklärt Markus Götz, Datenanalyst beim SCC. Den Aufbau eines Proteins kann man sich dabei wie eine Perlenkette vorstellen, an der Proteinteile, die Aminosäuren, aufgereiht sind. Seine dreidimensionale Struktur – und damit seine Eigenschaften – erhält es, indem sich manche weit voneinander entfernte „Perlen“ zu Paaren zusammenschließen und das Protein so falten. Bei verschiedenen Organismen können sich diese Paarungen unterscheiden, die Eigenschaften des Proteins bleiben aber dennoch gleich. „Schädliche Mutationen wurden im Laufe der Evolution ausgefiltert“, sagt Götz.
Das Team um Götz hat nun einer Künstlichen Intelligenz (KI) beigebracht, welche Kopplungen in bekannten Proteinsequenzen evolutionär erfolgreich waren. „Wir erwarten, dass das System so auch Rückschlüsse auf den Aufbau unbekannter Proteinsequenzen ziehen kann“, so Götz. Der Nutzen: „Es ist sehr einfach zu bestimmen, aus welchen Aminosäuren eine Proteinkette besteht. Proteinstrukturen direkt experimentell zu bestimmen, ist aber sehr aufwendig und kostet Millionen“, ergänzt Alexander Schug vom SCC.
Plötzlich gesund
Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‘Wissenschaft’, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.
Der Ansatz, Kontakte in Proteinen von einer KI vorhersagen zu lassen, ist nicht ganz neu. „Aktuell werden dafür vor allem Methoden aus der Bildverarbeitung eingesetzt“, sagt Götz. Solche Neuronalen Netzwerke könnten Muster gut erkennen. Bei der Proteinstruktur spielten aber besonders jene Kontakte von Proteinteilen eine Rolle, die besonders weit auseinander liegen, weil sie beim Falten einen stärkeren Einfluss auf die Form haben als solche, die nahe beieinander liegen. „Daher verfolgen wir stattdessen einen Ansatz aus der automatisierten Sprachübersetzung. Wir betrachten die Aminosäureketten als Sätze, die in eine andere Sprache übersetzt werden.“ Sogenannte „Self-Attention Neural Networks“ kommen in populären Übersetzungsprogrammen zum Einsatz. Sie können erkennen, welche Teile des Satzes miteinander in Beziehung stehen oder – im Proteinkontext – welche Aminosäuren miteinander einen Kontakt bilden.
Details zum KIT-Zentrum Information · Systeme · Technologien (in englischer Sprache): http://www.kcist.kit.edu
Weitere Materialien:
Das Video zeigt, wie sich das „Zellkleber“-Protein Fibronektin aus dem funktionalen Zustand entfaltet und dann wieder faltet (Animation: Ines Reinartz, KIT):
https://www.kit.edu/downloads/proteinfaltung.mp4
Weiterer Kontakt:
Dr. Felix Mescoli, Redakteur/Pressereferent, Tel.: +49 721 608 48120, E-Mail: felix.mescoli@kit.edu
Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 25 100 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.
Diese Presseinformation ist im Internet abrufbar unter: http://www.sek.kit.edu/presse.php
Wissenschaftliche Ansprechpartner:
Dr. Felix Mescoli, Redakteur/Pressereferent, Tel.: +49 721 608 48120, E-Mail: felix.mescoli@kit.edu
Weitere Informationen:
http://www.kcist.kit.edu
https://www.kit.edu/downloads/proteinfaltung.mp4
http://www.sek.kit.edu/presse.php
Anhang
Merkmale dieser Pressemitteilung:
Journalisten
Biologie, Chemie, Informationstechnik, Medizin
überregional
Forschungsergebnisse
Deutsch