Synapsen in 3D: Forscherteam macht Gehirnstrukturen sichtbar

Synapsen in 3D: Forscherteam macht Gehirnstrukturen sichtbar


Teilen: 

08.11.2019 10:04

Synapsen in 3D: Forscherteam macht Gehirnstrukturen sichtbar

Unser Gehirn besteht aus unzähligen Nervenzellen, die Signale von einer Zelle zur nächsten weiterleiten. Einen Schlüssel, um zu verstehen, wie unser Gedächtnis funktioniert, liefern die Verbindungen zwischen diesen Zellen, die Synapsen. Einem amerikanischen Forscherteam in Zusammenarbeit mit Rainer Heintzmann vom Leibniz-Institut für Photonische Technologien (Leibniz-IPHT) und der Friedrich-Schiller-Universität Jena ist es nun gelungen, diese Schaltstellen in millimetergroßem Hirngewebe anhand ihrer Struktur mit dem Lichtmikroskop zu identifizieren. Ihre Ergebnisse veröffentlichten die Forschenden am 31. Oktober 2019 in dem renommierten Fachmagazin Nature Methods.

Um die Synapsen sichtbar zu machen, entwickelte das Forscherteam an der Southwestern University Texas unter der Leitung von Reto Fiolka und Kevin Dean ein spezielles Mikroskop. Mit ihm beleuchten sie eine etwa millimetergroße Gewebeprobe von der Seite mit keilförmig fokussiertem Licht. Während sich der Fokus dieses Licht-Keils verschiebt, werden Bilddaten aufgenommen. So gelingt es den Forschenden, mithilfe von maschinellem Lernen hochaufgelöst und maßstabsgetreu dreidimensionale Gewebestrukturen innerhalb der Zellen zu erkennen und sichtbar zu machen. Mit bis zu 260 nm ist die axiale Auflösung des Mikroskops je nach optischer Konfiguration drei- bis zehnmal höher als bei konfokalen und bisherigen Lichtscheiben-Mikroskopen. Die dreidimensionale Bildgebung ermöglicht es, multizelluläre Gewebestrukturen ebenso zu erkennen und zu klassifizieren wie einzelne Zellen sowie seltene Interaktionen zwischen Zellen.

„Diese Arbeit ist wegweisend. Synapsen nur aufgrund ihrer Struktur mit dem Lichtmikroskop in millimetergroßen Gewebeblöcken zu erkennen, ist ein lang gehegter Wunsch von Wissenschaftlern gewesen“, sagt Rainer Heintzmann vom Leibniz-IPHT. Er berechnete die zu erwartende Lichtverteilung und somit die Qualität des Keil-Fokus. „Die Rechnungen sind für das optische Design des Instruments wichtig“, erläutert Rainer Heintzmann. „Sie berücksichtigen den unerwünschten Einfluss, den der nicht-ideale Brechungsindex des Einbettungsmediums auf die Qualität des Fokus‘ hat.” Die Methode könne dazu beitragen, einen Atlas der menschlichen Zellen zu erstellen, schreibt das Forscherteam. Weltweit arbeiten Wissenschaftlerinnen und Wissenschaftler daran, die Gesamtheit aller Zellen im menschlichen Körper dreidimensional abzubilden und zu charakterisieren. Dieser „Human Cell Atlas“ soll dazu beitragen, besser zu verstehen, wie grundlegende Prozesse in unserem Organismus ablaufen, wie sie sich verändern, wenn wir krank werden und so bessere Behandlungen ermöglichen.

Literature advertisement

Plötzlich gesund

Fortschreitende Naturerkenntnis, ganz allgemein gesprochen, ‘Wissenschaft’, ist der stärkste Feind des medizinischen Wunders. Was unseren Vorfahren als Wunder erschien, was einfache Naturvölker heute noch in heftige Erregung versetzt, das berührt den zivilisierten Menschen längst nicht mehr.
Doch es gibt einen Gegensatz, der jedem Denkenden sofort auffällt: der unerhörte, durchaus nicht abgeschlossene Aufstieg der wissenschaftlichen Heilkunde und die ebenso unerhörte Zunahme der Laienbehandlung und der Kurpfuscherei. Man schätzt die Zahl der Menschen, die der Schulmedizin kein Vertrauen schenken, auf immerhin 50 Prozent.
Wie kann es sein, daß Laienbehandler und Kurpfuscher immer wieder spektakuläre Erfolge aufweisen, von denen die Sensationspresse berichtet?
Der Autor geht dieser Frage nach und kommt zu interessanten Erkenntnissen, aus denen er Vorschläge für eine bessere Krankenbehandlung durch seine ärztlichen Standesgenossen ableitet.

Hier geht es weiter …


Wissenschaftliche Ansprechpartner:

Prof. Dr. Rainer Heintzmann
Leibniz-Institut für Photonische Technologien Jena
Leiter der Forschungsabteilung Mikroskopie
+49 (0) 3641 · 206-431
rainer.heintzmann(a)leibniz-ipht.de


Originalpublikation:

T. Chakraborty et al., Nature Methods 16, 1109-1113, 2019; https://doi.org/10.1038/s41592-019-0615-4


Merkmale dieser Pressemitteilung:
Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler, jedermann
Informationstechnik, Medizin, Physik / Astronomie
überregional
Forschungsergebnisse
Deutsch


Quelle: IDW